# Polytope of Type {3,6,3,6}

Atlas Canonical Name : {3,6,3,6}*648
if this polytope has a name.
Group : SmallGroup(648,555)
Rank : 5
Schlafli Type : {3,6,3,6}
Number of vertices, edges, etc : 3, 9, 9, 9, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,6,3,6,2} of size 1296
{3,6,3,6,3} of size 1944
Vertex Figure Of :
{2,3,6,3,6} of size 1296
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,6,3,2}*216, {3,2,3,6}*216
9-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,6,6,6}*1296b, {6,6,3,6}*1296a
3-fold covers : {3,6,9,6}*1944, {9,6,3,6}*1944, {3,6,3,6}*1944a, {3,6,3,6}*1944b, {3,6,3,6}*1944c
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27);;
s1 := ( 2, 3)( 5, 6)( 8, 9)(10,12)(13,15)(16,18)(19,20)(22,23)(25,26);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)(20,21)
(22,25)(23,27)(24,26);;
s3 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,22)(11,24)(12,23)(13,19)(14,21)(15,20)
(16,25)(17,27)(18,26);;
s4 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(27)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27);
s1 := Sym(27)!( 2, 3)( 5, 6)( 8, 9)(10,12)(13,15)(16,18)(19,20)(22,23)(25,26);
s2 := Sym(27)!( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)
(20,21)(22,25)(23,27)(24,26);
s3 := Sym(27)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,22)(11,24)(12,23)(13,19)(14,21)
(15,20)(16,25)(17,27)(18,26);
s4 := Sym(27)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27);
poly := sub<Sym(27)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 >;

```
References : None.
to this polytope