Polytope of Type {18,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,6}*1944s
if this polytope has a name.
Group : SmallGroup(1944,2345)
Rank : 3
Schlafli Type : {18,6}
Number of vertices, edges, etc : 162, 486, 54
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {18,6}*648f, {6,6}*648g
   6-fold quotients : {18,6}*324b
   9-fold quotients : {6,6}*216b, {6,6}*216d
   18-fold quotients : {6,6}*108
   27-fold quotients : {6,6}*72a, {6,6}*72b, {6,6}*72c
   54-fold quotients : {3,6}*36, {6,3}*36
   81-fold quotients : {2,6}*24, {6,2}*24
   162-fold quotients : {2,3}*12, {3,2}*12
   243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,20)(11,19)(12,21)(13,26)(14,25)(15,27)
(16,23)(17,22)(18,24)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)
(36,59)(37,74)(38,73)(39,75)(40,80)(41,79)(42,81)(43,77)(44,76)(45,78)(46,65)
(47,64)(48,66)(49,71)(50,70)(51,72)(52,68)(53,67)(54,69);;
s1 := ( 1,37)( 2,39)( 3,38)( 4,40)( 5,42)( 6,41)( 7,43)( 8,45)( 9,44)(10,28)
(11,30)(12,29)(13,31)(14,33)(15,32)(16,34)(17,36)(18,35)(19,47)(20,46)(21,48)
(22,50)(23,49)(24,51)(25,53)(26,52)(27,54)(55,64)(56,66)(57,65)(58,67)(59,69)
(60,68)(61,70)(62,72)(63,71)(73,74)(76,77)(79,80);;
s2 := ( 4, 8)( 5, 9)( 6, 7)(10,14)(11,15)(12,13)(19,27)(20,25)(21,26)(28,55)
(29,56)(30,57)(31,62)(32,63)(33,61)(34,60)(35,58)(36,59)(37,68)(38,69)(39,67)
(40,66)(41,64)(42,65)(43,70)(44,71)(45,72)(46,81)(47,79)(48,80)(49,76)(50,77)
(51,78)(52,74)(53,75)(54,73);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s0*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,20)(11,19)(12,21)(13,26)(14,25)
(15,27)(16,23)(17,22)(18,24)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)
(35,60)(36,59)(37,74)(38,73)(39,75)(40,80)(41,79)(42,81)(43,77)(44,76)(45,78)
(46,65)(47,64)(48,66)(49,71)(50,70)(51,72)(52,68)(53,67)(54,69);
s1 := Sym(81)!( 1,37)( 2,39)( 3,38)( 4,40)( 5,42)( 6,41)( 7,43)( 8,45)( 9,44)
(10,28)(11,30)(12,29)(13,31)(14,33)(15,32)(16,34)(17,36)(18,35)(19,47)(20,46)
(21,48)(22,50)(23,49)(24,51)(25,53)(26,52)(27,54)(55,64)(56,66)(57,65)(58,67)
(59,69)(60,68)(61,70)(62,72)(63,71)(73,74)(76,77)(79,80);
s2 := Sym(81)!( 4, 8)( 5, 9)( 6, 7)(10,14)(11,15)(12,13)(19,27)(20,25)(21,26)
(28,55)(29,56)(30,57)(31,62)(32,63)(33,61)(34,60)(35,58)(36,59)(37,68)(38,69)
(39,67)(40,66)(41,64)(42,65)(43,70)(44,71)(45,72)(46,81)(47,79)(48,80)(49,76)
(50,77)(51,78)(52,74)(53,75)(54,73);
poly := sub<Sym(81)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s0*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s0*s1*s0 >; 
 
References : None.
to this polytope