Polytope of Type {3,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,6}*1944h
if this polytope has a name.
Group : SmallGroup(1944,2346)
Rank : 4
Schlafli Type : {3,6,6}
Number of vertices, edges, etc : 27, 81, 162, 6
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6,2}*648, {3,6,6}*648c
   9-fold quotients : {3,6,2}*216, {3,6,6}*216b
   27-fold quotients : {3,2,6}*72, {3,6,2}*72
   54-fold quotients : {3,2,3}*36
   81-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)(16,26)
(17,25)(18,27)(29,30)(32,33)(35,36)(37,47)(38,46)(39,48)(40,50)(41,49)(42,51)
(43,53)(44,52)(45,54)(56,57)(59,60)(62,63)(64,74)(65,73)(66,75)(67,77)(68,76)
(69,78)(70,80)(71,79)(72,81);;
s1 := ( 1,13)( 2,15)( 3,14)( 4,18)( 5,17)( 6,16)( 7,11)( 8,10)( 9,12)(20,21)
(22,24)(25,26)(28,40)(29,42)(30,41)(31,45)(32,44)(33,43)(34,38)(35,37)(36,39)
(47,48)(49,51)(52,53)(55,67)(56,69)(57,68)(58,72)(59,71)(60,70)(61,65)(62,64)
(63,66)(74,75)(76,78)(79,80);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(28,55)
(29,56)(30,57)(31,61)(32,62)(33,63)(34,58)(35,59)(36,60)(37,64)(38,65)(39,66)
(40,70)(41,71)(42,72)(43,67)(44,68)(45,69)(46,73)(47,74)(48,75)(49,79)(50,80)
(51,81)(52,76)(53,77)(54,78);;
s3 := ( 1,28)( 2,29)( 3,30)( 4,31)( 5,32)( 6,33)( 7,34)( 8,35)( 9,36)(10,37)
(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)
(22,49)(23,50)(24,51)(25,52)(26,53)(27,54);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)
(16,26)(17,25)(18,27)(29,30)(32,33)(35,36)(37,47)(38,46)(39,48)(40,50)(41,49)
(42,51)(43,53)(44,52)(45,54)(56,57)(59,60)(62,63)(64,74)(65,73)(66,75)(67,77)
(68,76)(69,78)(70,80)(71,79)(72,81);
s1 := Sym(81)!( 1,13)( 2,15)( 3,14)( 4,18)( 5,17)( 6,16)( 7,11)( 8,10)( 9,12)
(20,21)(22,24)(25,26)(28,40)(29,42)(30,41)(31,45)(32,44)(33,43)(34,38)(35,37)
(36,39)(47,48)(49,51)(52,53)(55,67)(56,69)(57,68)(58,72)(59,71)(60,70)(61,65)
(62,64)(63,66)(74,75)(76,78)(79,80);
s2 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(28,55)(29,56)(30,57)(31,61)(32,62)(33,63)(34,58)(35,59)(36,60)(37,64)(38,65)
(39,66)(40,70)(41,71)(42,72)(43,67)(44,68)(45,69)(46,73)(47,74)(48,75)(49,79)
(50,80)(51,81)(52,76)(53,77)(54,78);
s3 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,31)( 5,32)( 6,33)( 7,34)( 8,35)( 9,36)
(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)
(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54);
poly := sub<Sym(81)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 
References : None.
to this polytope