include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6}*1944
if this polytope has a name.
Group : SmallGroup(1944,941)
Rank : 4
Schlafli Type : {2,6,6}
Number of vertices, edges, etc : 2, 81, 243, 81
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,6}*648a, {2,6,6}*648b
9-fold quotients : {2,6,6}*216
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)(10,11)(12,24)(13,26)(14,25)(15,27)(16,29)(17,28)(18,21)
(19,23)(20,22)(30,57)(31,59)(32,58)(33,60)(34,62)(35,61)(36,63)(37,65)(38,64)
(39,78)(40,80)(41,79)(42,81)(43,83)(44,82)(45,75)(46,77)(47,76)(48,72)(49,74)
(50,73)(51,66)(52,68)(53,67)(54,69)(55,71)(56,70);;
s2 := ( 3,30)( 4,32)( 5,31)( 6,36)( 7,38)( 8,37)( 9,33)(10,35)(11,34)(12,41)
(13,40)(14,39)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,49)(22,48)(23,50)
(24,55)(25,54)(26,56)(27,52)(28,51)(29,53)(58,59)(60,63)(61,65)(62,64)(66,68)
(69,74)(70,73)(71,72)(75,76)(78,82)(79,81)(80,83);;
s3 := ( 6, 9)( 7,10)( 8,11)(12,21)(13,22)(14,23)(15,27)(16,28)(17,29)(18,24)
(19,25)(20,26)(30,39)(31,40)(32,41)(33,45)(34,46)(35,47)(36,42)(37,43)(38,44)
(51,54)(52,55)(53,56)(57,78)(58,79)(59,80)(60,75)(61,76)(62,77)(63,81)(64,82)
(65,83)(66,69)(67,70)(68,71);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1,
s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(83)!(1,2);
s1 := Sym(83)!( 4, 5)( 7, 8)(10,11)(12,24)(13,26)(14,25)(15,27)(16,29)(17,28)
(18,21)(19,23)(20,22)(30,57)(31,59)(32,58)(33,60)(34,62)(35,61)(36,63)(37,65)
(38,64)(39,78)(40,80)(41,79)(42,81)(43,83)(44,82)(45,75)(46,77)(47,76)(48,72)
(49,74)(50,73)(51,66)(52,68)(53,67)(54,69)(55,71)(56,70);
s2 := Sym(83)!( 3,30)( 4,32)( 5,31)( 6,36)( 7,38)( 8,37)( 9,33)(10,35)(11,34)
(12,41)(13,40)(14,39)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,49)(22,48)
(23,50)(24,55)(25,54)(26,56)(27,52)(28,51)(29,53)(58,59)(60,63)(61,65)(62,64)
(66,68)(69,74)(70,73)(71,72)(75,76)(78,82)(79,81)(80,83);
s3 := Sym(83)!( 6, 9)( 7,10)( 8,11)(12,21)(13,22)(14,23)(15,27)(16,28)(17,29)
(18,24)(19,25)(20,26)(30,39)(31,40)(32,41)(33,45)(34,46)(35,47)(36,42)(37,43)
(38,44)(51,54)(52,55)(53,56)(57,78)(58,79)(59,80)(60,75)(61,76)(62,77)(63,81)
(64,82)(65,83)(66,69)(67,70)(68,71);
poly := sub<Sym(83)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1,
s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s1*s2 >;
to this polytope