Polytope of Type {6,9,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,9,2}*1944d
if this polytope has a name.
Group : SmallGroup(1944,949)
Rank : 4
Schlafli Type : {6,9,2}
Number of vertices, edges, etc : 54, 243, 81, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,9,2}*648a, {6,9,2}*648b
   9-fold quotients : {6,9,2}*216, {6,3,2}*216
   27-fold quotients : {2,9,2}*72, {6,3,2}*72
   81-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 55)( 29, 57)( 30, 56)( 31, 61)
( 32, 63)( 33, 62)( 34, 58)( 35, 60)( 36, 59)( 37, 64)( 38, 66)( 39, 65)
( 40, 70)( 41, 72)( 42, 71)( 43, 67)( 44, 69)( 45, 68)( 46, 73)( 47, 75)
( 48, 74)( 49, 79)( 50, 81)( 51, 80)( 52, 76)( 53, 78)( 54, 77)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)
(103,106)(104,108)(105,107)(109,136)(110,138)(111,137)(112,142)(113,144)
(114,143)(115,139)(116,141)(117,140)(118,145)(119,147)(120,146)(121,151)
(122,153)(123,152)(124,148)(125,150)(126,149)(127,154)(128,156)(129,155)
(130,160)(131,162)(132,161)(133,157)(134,159)(135,158)(164,165)(166,169)
(167,171)(168,170)(173,174)(175,178)(176,180)(177,179)(182,183)(184,187)
(185,189)(186,188)(190,217)(191,219)(192,218)(193,223)(194,225)(195,224)
(196,220)(197,222)(198,221)(199,226)(200,228)(201,227)(202,232)(203,234)
(204,233)(205,229)(206,231)(207,230)(208,235)(209,237)(210,236)(211,241)
(212,243)(213,242)(214,238)(215,240)(216,239);;
s1 := (  1, 28)(  2, 30)(  3, 29)(  4, 33)(  5, 32)(  6, 31)(  7, 35)(  8, 34)
(  9, 36)( 10, 46)( 11, 48)( 12, 47)( 13, 51)( 14, 50)( 15, 49)( 16, 53)
( 17, 52)( 18, 54)( 19, 37)( 20, 39)( 21, 38)( 22, 42)( 23, 41)( 24, 40)
( 25, 44)( 26, 43)( 27, 45)( 56, 57)( 58, 60)( 61, 62)( 64, 73)( 65, 75)
( 66, 74)( 67, 78)( 68, 77)( 69, 76)( 70, 80)( 71, 79)( 72, 81)( 82,208)
( 83,210)( 84,209)( 85,213)( 86,212)( 87,211)( 88,215)( 89,214)( 90,216)
( 91,199)( 92,201)( 93,200)( 94,204)( 95,203)( 96,202)( 97,206)( 98,205)
( 99,207)(100,190)(101,192)(102,191)(103,195)(104,194)(105,193)(106,197)
(107,196)(108,198)(109,181)(110,183)(111,182)(112,186)(113,185)(114,184)
(115,188)(116,187)(117,189)(118,172)(119,174)(120,173)(121,177)(122,176)
(123,175)(124,179)(125,178)(126,180)(127,163)(128,165)(129,164)(130,168)
(131,167)(132,166)(133,170)(134,169)(135,171)(136,235)(137,237)(138,236)
(139,240)(140,239)(141,238)(142,242)(143,241)(144,243)(145,226)(146,228)
(147,227)(148,231)(149,230)(150,229)(151,233)(152,232)(153,234)(154,217)
(155,219)(156,218)(157,222)(158,221)(159,220)(160,224)(161,223)(162,225);;
s2 := (  1, 82)(  2, 84)(  3, 83)(  4, 85)(  5, 87)(  6, 86)(  7, 88)(  8, 90)
(  9, 89)( 10,100)( 11,102)( 12,101)( 13,103)( 14,105)( 15,104)( 16,106)
( 17,108)( 18,107)( 19, 91)( 20, 93)( 21, 92)( 22, 94)( 23, 96)( 24, 95)
( 25, 97)( 26, 99)( 27, 98)( 28,142)( 29,144)( 30,143)( 31,136)( 32,138)
( 33,137)( 34,139)( 35,141)( 36,140)( 37,160)( 38,162)( 39,161)( 40,154)
( 41,156)( 42,155)( 43,157)( 44,159)( 45,158)( 46,151)( 47,153)( 48,152)
( 49,145)( 50,147)( 51,146)( 52,148)( 53,150)( 54,149)( 55,112)( 56,114)
( 57,113)( 58,115)( 59,117)( 60,116)( 61,109)( 62,111)( 63,110)( 64,130)
( 65,132)( 66,131)( 67,133)( 68,135)( 69,134)( 70,127)( 71,129)( 72,128)
( 73,121)( 74,123)( 75,122)( 76,124)( 77,126)( 78,125)( 79,118)( 80,120)
( 81,119)(163,181)(164,183)(165,182)(166,184)(167,186)(168,185)(169,187)
(170,189)(171,188)(173,174)(176,177)(179,180)(190,241)(191,243)(192,242)
(193,235)(194,237)(195,236)(196,238)(197,240)(198,239)(199,232)(200,234)
(201,233)(202,226)(203,228)(204,227)(205,229)(206,231)(207,230)(208,223)
(209,225)(210,224)(211,217)(212,219)(213,218)(214,220)(215,222)(216,221);;
s3 := (244,245);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(245)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 55)( 29, 57)( 30, 56)
( 31, 61)( 32, 63)( 33, 62)( 34, 58)( 35, 60)( 36, 59)( 37, 64)( 38, 66)
( 39, 65)( 40, 70)( 41, 72)( 42, 71)( 43, 67)( 44, 69)( 45, 68)( 46, 73)
( 47, 75)( 48, 74)( 49, 79)( 50, 81)( 51, 80)( 52, 76)( 53, 78)( 54, 77)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)
(101,102)(103,106)(104,108)(105,107)(109,136)(110,138)(111,137)(112,142)
(113,144)(114,143)(115,139)(116,141)(117,140)(118,145)(119,147)(120,146)
(121,151)(122,153)(123,152)(124,148)(125,150)(126,149)(127,154)(128,156)
(129,155)(130,160)(131,162)(132,161)(133,157)(134,159)(135,158)(164,165)
(166,169)(167,171)(168,170)(173,174)(175,178)(176,180)(177,179)(182,183)
(184,187)(185,189)(186,188)(190,217)(191,219)(192,218)(193,223)(194,225)
(195,224)(196,220)(197,222)(198,221)(199,226)(200,228)(201,227)(202,232)
(203,234)(204,233)(205,229)(206,231)(207,230)(208,235)(209,237)(210,236)
(211,241)(212,243)(213,242)(214,238)(215,240)(216,239);
s1 := Sym(245)!(  1, 28)(  2, 30)(  3, 29)(  4, 33)(  5, 32)(  6, 31)(  7, 35)
(  8, 34)(  9, 36)( 10, 46)( 11, 48)( 12, 47)( 13, 51)( 14, 50)( 15, 49)
( 16, 53)( 17, 52)( 18, 54)( 19, 37)( 20, 39)( 21, 38)( 22, 42)( 23, 41)
( 24, 40)( 25, 44)( 26, 43)( 27, 45)( 56, 57)( 58, 60)( 61, 62)( 64, 73)
( 65, 75)( 66, 74)( 67, 78)( 68, 77)( 69, 76)( 70, 80)( 71, 79)( 72, 81)
( 82,208)( 83,210)( 84,209)( 85,213)( 86,212)( 87,211)( 88,215)( 89,214)
( 90,216)( 91,199)( 92,201)( 93,200)( 94,204)( 95,203)( 96,202)( 97,206)
( 98,205)( 99,207)(100,190)(101,192)(102,191)(103,195)(104,194)(105,193)
(106,197)(107,196)(108,198)(109,181)(110,183)(111,182)(112,186)(113,185)
(114,184)(115,188)(116,187)(117,189)(118,172)(119,174)(120,173)(121,177)
(122,176)(123,175)(124,179)(125,178)(126,180)(127,163)(128,165)(129,164)
(130,168)(131,167)(132,166)(133,170)(134,169)(135,171)(136,235)(137,237)
(138,236)(139,240)(140,239)(141,238)(142,242)(143,241)(144,243)(145,226)
(146,228)(147,227)(148,231)(149,230)(150,229)(151,233)(152,232)(153,234)
(154,217)(155,219)(156,218)(157,222)(158,221)(159,220)(160,224)(161,223)
(162,225);
s2 := Sym(245)!(  1, 82)(  2, 84)(  3, 83)(  4, 85)(  5, 87)(  6, 86)(  7, 88)
(  8, 90)(  9, 89)( 10,100)( 11,102)( 12,101)( 13,103)( 14,105)( 15,104)
( 16,106)( 17,108)( 18,107)( 19, 91)( 20, 93)( 21, 92)( 22, 94)( 23, 96)
( 24, 95)( 25, 97)( 26, 99)( 27, 98)( 28,142)( 29,144)( 30,143)( 31,136)
( 32,138)( 33,137)( 34,139)( 35,141)( 36,140)( 37,160)( 38,162)( 39,161)
( 40,154)( 41,156)( 42,155)( 43,157)( 44,159)( 45,158)( 46,151)( 47,153)
( 48,152)( 49,145)( 50,147)( 51,146)( 52,148)( 53,150)( 54,149)( 55,112)
( 56,114)( 57,113)( 58,115)( 59,117)( 60,116)( 61,109)( 62,111)( 63,110)
( 64,130)( 65,132)( 66,131)( 67,133)( 68,135)( 69,134)( 70,127)( 71,129)
( 72,128)( 73,121)( 74,123)( 75,122)( 76,124)( 77,126)( 78,125)( 79,118)
( 80,120)( 81,119)(163,181)(164,183)(165,182)(166,184)(167,186)(168,185)
(169,187)(170,189)(171,188)(173,174)(176,177)(179,180)(190,241)(191,243)
(192,242)(193,235)(194,237)(195,236)(196,238)(197,240)(198,239)(199,232)
(200,234)(201,233)(202,226)(203,228)(204,227)(205,229)(206,231)(207,230)
(208,223)(209,225)(210,224)(211,217)(212,219)(213,218)(214,220)(215,222)
(216,221);
s3 := Sym(245)!(244,245);
poly := sub<Sym(245)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope