Polytope of Type {6,9,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,9,2}*648a
if this polytope has a name.
Group : SmallGroup(648,297)
Rank : 4
Schlafli Type : {6,9,2}
Number of vertices, edges, etc : 18, 81, 27, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,9,2,2} of size 1296
   {6,9,2,3} of size 1944
Vertex Figure Of :
   {2,6,9,2} of size 1296
   {3,6,9,2} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,9,2}*216, {6,3,2}*216
   9-fold quotients : {2,9,2}*72, {6,3,2}*72
   27-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,18,2}*1296a
   3-fold covers : {18,9,2}*1944a, {6,27,2}*1944a, {6,9,2}*1944d, {18,9,2}*1944h, {18,9,2}*1944i, {6,9,2}*1944e, {6,27,2}*1944b, {6,27,2}*1944c, {6,9,6}*1944b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(10,19)(11,21)(12,20)(13,22)(14,24)(15,23)(16,25)
(17,27)(18,26)(29,30)(32,33)(35,36)(37,46)(38,48)(39,47)(40,49)(41,51)(42,50)
(43,52)(44,54)(45,53)(56,57)(59,60)(62,63)(64,73)(65,75)(66,74)(67,76)(68,78)
(69,77)(70,79)(71,81)(72,80);;
s1 := ( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)(22,25)
(23,26)(24,27)(28,67)(29,68)(30,69)(31,64)(32,65)(33,66)(34,70)(35,71)(36,72)
(37,58)(38,59)(39,60)(40,55)(41,56)(42,57)(43,61)(44,62)(45,63)(46,76)(47,77)
(48,78)(49,73)(50,74)(51,75)(52,79)(53,80)(54,81);;
s2 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,48)
(11,46)(12,47)(13,54)(14,52)(15,53)(16,51)(17,49)(18,50)(19,38)(20,39)(21,37)
(22,44)(23,45)(24,43)(25,41)(26,42)(27,40)(55,58)(56,59)(57,60)(64,78)(65,76)
(66,77)(67,75)(68,73)(69,74)(70,81)(71,79)(72,80);;
s3 := (82,83);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(83)!( 2, 3)( 5, 6)( 8, 9)(10,19)(11,21)(12,20)(13,22)(14,24)(15,23)
(16,25)(17,27)(18,26)(29,30)(32,33)(35,36)(37,46)(38,48)(39,47)(40,49)(41,51)
(42,50)(43,52)(44,54)(45,53)(56,57)(59,60)(62,63)(64,73)(65,75)(66,74)(67,76)
(68,78)(69,77)(70,79)(71,81)(72,80);
s1 := Sym(83)!( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)
(22,25)(23,26)(24,27)(28,67)(29,68)(30,69)(31,64)(32,65)(33,66)(34,70)(35,71)
(36,72)(37,58)(38,59)(39,60)(40,55)(41,56)(42,57)(43,61)(44,62)(45,63)(46,76)
(47,77)(48,78)(49,73)(50,74)(51,75)(52,79)(53,80)(54,81);
s2 := Sym(83)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,48)(11,46)(12,47)(13,54)(14,52)(15,53)(16,51)(17,49)(18,50)(19,38)(20,39)
(21,37)(22,44)(23,45)(24,43)(25,41)(26,42)(27,40)(55,58)(56,59)(57,60)(64,78)
(65,76)(66,77)(67,75)(68,73)(69,74)(70,81)(71,79)(72,80);
s3 := Sym(83)!(82,83);
poly := sub<Sym(83)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope