Polytope of Type {162,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {162,6}*1944a
Also Known As : {162,6|2}. if this polytope has another name.
Group : SmallGroup(1944,955)
Rank : 3
Schlafli Type : {162,6}
Number of vertices, edges, etc : 162, 486, 6
Order of s0s1s2 : 162
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {162,2}*648, {54,6}*648a
   6-fold quotients : {81,2}*324
   9-fold quotients : {54,2}*216, {18,6}*216a
   18-fold quotients : {27,2}*108
   27-fold quotients : {18,2}*72, {6,6}*72a
   54-fold quotients : {9,2}*36
   81-fold quotients : {2,6}*24, {6,2}*24
   162-fold quotients : {2,3}*12, {3,2}*12
   243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  8)(  5,  7)(  6,  9)( 10, 23)( 11, 22)( 12, 24)( 13, 20)
( 14, 19)( 15, 21)( 16, 27)( 17, 26)( 18, 25)( 29, 30)( 31, 35)( 32, 34)
( 33, 36)( 37, 50)( 38, 49)( 39, 51)( 40, 47)( 41, 46)( 42, 48)( 43, 54)
( 44, 53)( 45, 52)( 56, 57)( 58, 62)( 59, 61)( 60, 63)( 64, 77)( 65, 76)
( 66, 78)( 67, 74)( 68, 73)( 69, 75)( 70, 81)( 71, 80)( 72, 79)( 82,176)
( 83,175)( 84,177)( 85,173)( 86,172)( 87,174)( 88,180)( 89,179)( 90,178)
( 91,167)( 92,166)( 93,168)( 94,164)( 95,163)( 96,165)( 97,171)( 98,170)
( 99,169)(100,189)(101,188)(102,187)(103,186)(104,185)(105,184)(106,183)
(107,182)(108,181)(109,203)(110,202)(111,204)(112,200)(113,199)(114,201)
(115,207)(116,206)(117,205)(118,194)(119,193)(120,195)(121,191)(122,190)
(123,192)(124,198)(125,197)(126,196)(127,216)(128,215)(129,214)(130,213)
(131,212)(132,211)(133,210)(134,209)(135,208)(136,230)(137,229)(138,231)
(139,227)(140,226)(141,228)(142,234)(143,233)(144,232)(145,221)(146,220)
(147,222)(148,218)(149,217)(150,219)(151,225)(152,224)(153,223)(154,243)
(155,242)(156,241)(157,240)(158,239)(159,238)(160,237)(161,236)(162,235)
(245,246)(247,251)(248,250)(249,252)(253,266)(254,265)(255,267)(256,263)
(257,262)(258,264)(259,270)(260,269)(261,268)(272,273)(274,278)(275,277)
(276,279)(280,293)(281,292)(282,294)(283,290)(284,289)(285,291)(286,297)
(287,296)(288,295)(299,300)(301,305)(302,304)(303,306)(307,320)(308,319)
(309,321)(310,317)(311,316)(312,318)(313,324)(314,323)(315,322)(325,419)
(326,418)(327,420)(328,416)(329,415)(330,417)(331,423)(332,422)(333,421)
(334,410)(335,409)(336,411)(337,407)(338,406)(339,408)(340,414)(341,413)
(342,412)(343,432)(344,431)(345,430)(346,429)(347,428)(348,427)(349,426)
(350,425)(351,424)(352,446)(353,445)(354,447)(355,443)(356,442)(357,444)
(358,450)(359,449)(360,448)(361,437)(362,436)(363,438)(364,434)(365,433)
(366,435)(367,441)(368,440)(369,439)(370,459)(371,458)(372,457)(373,456)
(374,455)(375,454)(376,453)(377,452)(378,451)(379,473)(380,472)(381,474)
(382,470)(383,469)(384,471)(385,477)(386,476)(387,475)(388,464)(389,463)
(390,465)(391,461)(392,460)(393,462)(394,468)(395,467)(396,466)(397,486)
(398,485)(399,484)(400,483)(401,482)(402,481)(403,480)(404,479)(405,478);;
s1 := (  1, 82)(  2, 84)(  3, 83)(  4, 89)(  5, 88)(  6, 90)(  7, 86)(  8, 85)
(  9, 87)( 10,104)( 11,103)( 12,105)( 13,101)( 14,100)( 15,102)( 16,108)
( 17,107)( 18,106)( 19, 95)( 20, 94)( 21, 96)( 22, 92)( 23, 91)( 24, 93)
( 25, 99)( 26, 98)( 27, 97)( 28,136)( 29,138)( 30,137)( 31,143)( 32,142)
( 33,144)( 34,140)( 35,139)( 36,141)( 37,158)( 38,157)( 39,159)( 40,155)
( 41,154)( 42,156)( 43,162)( 44,161)( 45,160)( 46,149)( 47,148)( 48,150)
( 49,146)( 50,145)( 51,147)( 52,153)( 53,152)( 54,151)( 55,109)( 56,111)
( 57,110)( 58,116)( 59,115)( 60,117)( 61,113)( 62,112)( 63,114)( 64,131)
( 65,130)( 66,132)( 67,128)( 68,127)( 69,129)( 70,135)( 71,134)( 72,133)
( 73,122)( 74,121)( 75,123)( 76,119)( 77,118)( 78,120)( 79,126)( 80,125)
( 81,124)(163,176)(164,175)(165,177)(166,173)(167,172)(168,174)(169,180)
(170,179)(171,178)(181,189)(182,188)(183,187)(184,186)(190,230)(191,229)
(192,231)(193,227)(194,226)(195,228)(196,234)(197,233)(198,232)(199,221)
(200,220)(201,222)(202,218)(203,217)(204,219)(205,225)(206,224)(207,223)
(208,243)(209,242)(210,241)(211,240)(212,239)(213,238)(214,237)(215,236)
(216,235)(244,325)(245,327)(246,326)(247,332)(248,331)(249,333)(250,329)
(251,328)(252,330)(253,347)(254,346)(255,348)(256,344)(257,343)(258,345)
(259,351)(260,350)(261,349)(262,338)(263,337)(264,339)(265,335)(266,334)
(267,336)(268,342)(269,341)(270,340)(271,379)(272,381)(273,380)(274,386)
(275,385)(276,387)(277,383)(278,382)(279,384)(280,401)(281,400)(282,402)
(283,398)(284,397)(285,399)(286,405)(287,404)(288,403)(289,392)(290,391)
(291,393)(292,389)(293,388)(294,390)(295,396)(296,395)(297,394)(298,352)
(299,354)(300,353)(301,359)(302,358)(303,360)(304,356)(305,355)(306,357)
(307,374)(308,373)(309,375)(310,371)(311,370)(312,372)(313,378)(314,377)
(315,376)(316,365)(317,364)(318,366)(319,362)(320,361)(321,363)(322,369)
(323,368)(324,367)(406,419)(407,418)(408,420)(409,416)(410,415)(411,417)
(412,423)(413,422)(414,421)(424,432)(425,431)(426,430)(427,429)(433,473)
(434,472)(435,474)(436,470)(437,469)(438,471)(439,477)(440,476)(441,475)
(442,464)(443,463)(444,465)(445,461)(446,460)(447,462)(448,468)(449,467)
(450,466)(451,486)(452,485)(453,484)(454,483)(455,482)(456,481)(457,480)
(458,479)(459,478);;
s2 := (  1,271)(  2,272)(  3,273)(  4,274)(  5,275)(  6,276)(  7,277)(  8,278)
(  9,279)( 10,280)( 11,281)( 12,282)( 13,283)( 14,284)( 15,285)( 16,286)
( 17,287)( 18,288)( 19,289)( 20,290)( 21,291)( 22,292)( 23,293)( 24,294)
( 25,295)( 26,296)( 27,297)( 28,244)( 29,245)( 30,246)( 31,247)( 32,248)
( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)( 40,256)
( 41,257)( 42,258)( 43,259)( 44,260)( 45,261)( 46,262)( 47,263)( 48,264)
( 49,265)( 50,266)( 51,267)( 52,268)( 53,269)( 54,270)( 55,298)( 56,299)
( 57,300)( 58,301)( 59,302)( 60,303)( 61,304)( 62,305)( 63,306)( 64,307)
( 65,308)( 66,309)( 67,310)( 68,311)( 69,312)( 70,313)( 71,314)( 72,315)
( 73,316)( 74,317)( 75,318)( 76,319)( 77,320)( 78,321)( 79,322)( 80,323)
( 81,324)( 82,352)( 83,353)( 84,354)( 85,355)( 86,356)( 87,357)( 88,358)
( 89,359)( 90,360)( 91,361)( 92,362)( 93,363)( 94,364)( 95,365)( 96,366)
( 97,367)( 98,368)( 99,369)(100,370)(101,371)(102,372)(103,373)(104,374)
(105,375)(106,376)(107,377)(108,378)(109,325)(110,326)(111,327)(112,328)
(113,329)(114,330)(115,331)(116,332)(117,333)(118,334)(119,335)(120,336)
(121,337)(122,338)(123,339)(124,340)(125,341)(126,342)(127,343)(128,344)
(129,345)(130,346)(131,347)(132,348)(133,349)(134,350)(135,351)(136,379)
(137,380)(138,381)(139,382)(140,383)(141,384)(142,385)(143,386)(144,387)
(145,388)(146,389)(147,390)(148,391)(149,392)(150,393)(151,394)(152,395)
(153,396)(154,397)(155,398)(156,399)(157,400)(158,401)(159,402)(160,403)
(161,404)(162,405)(163,433)(164,434)(165,435)(166,436)(167,437)(168,438)
(169,439)(170,440)(171,441)(172,442)(173,443)(174,444)(175,445)(176,446)
(177,447)(178,448)(179,449)(180,450)(181,451)(182,452)(183,453)(184,454)
(185,455)(186,456)(187,457)(188,458)(189,459)(190,406)(191,407)(192,408)
(193,409)(194,410)(195,411)(196,412)(197,413)(198,414)(199,415)(200,416)
(201,417)(202,418)(203,419)(204,420)(205,421)(206,422)(207,423)(208,424)
(209,425)(210,426)(211,427)(212,428)(213,429)(214,430)(215,431)(216,432)
(217,460)(218,461)(219,462)(220,463)(221,464)(222,465)(223,466)(224,467)
(225,468)(226,469)(227,470)(228,471)(229,472)(230,473)(231,474)(232,475)
(233,476)(234,477)(235,478)(236,479)(237,480)(238,481)(239,482)(240,483)
(241,484)(242,485)(243,486);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(486)!(  2,  3)(  4,  8)(  5,  7)(  6,  9)( 10, 23)( 11, 22)( 12, 24)
( 13, 20)( 14, 19)( 15, 21)( 16, 27)( 17, 26)( 18, 25)( 29, 30)( 31, 35)
( 32, 34)( 33, 36)( 37, 50)( 38, 49)( 39, 51)( 40, 47)( 41, 46)( 42, 48)
( 43, 54)( 44, 53)( 45, 52)( 56, 57)( 58, 62)( 59, 61)( 60, 63)( 64, 77)
( 65, 76)( 66, 78)( 67, 74)( 68, 73)( 69, 75)( 70, 81)( 71, 80)( 72, 79)
( 82,176)( 83,175)( 84,177)( 85,173)( 86,172)( 87,174)( 88,180)( 89,179)
( 90,178)( 91,167)( 92,166)( 93,168)( 94,164)( 95,163)( 96,165)( 97,171)
( 98,170)( 99,169)(100,189)(101,188)(102,187)(103,186)(104,185)(105,184)
(106,183)(107,182)(108,181)(109,203)(110,202)(111,204)(112,200)(113,199)
(114,201)(115,207)(116,206)(117,205)(118,194)(119,193)(120,195)(121,191)
(122,190)(123,192)(124,198)(125,197)(126,196)(127,216)(128,215)(129,214)
(130,213)(131,212)(132,211)(133,210)(134,209)(135,208)(136,230)(137,229)
(138,231)(139,227)(140,226)(141,228)(142,234)(143,233)(144,232)(145,221)
(146,220)(147,222)(148,218)(149,217)(150,219)(151,225)(152,224)(153,223)
(154,243)(155,242)(156,241)(157,240)(158,239)(159,238)(160,237)(161,236)
(162,235)(245,246)(247,251)(248,250)(249,252)(253,266)(254,265)(255,267)
(256,263)(257,262)(258,264)(259,270)(260,269)(261,268)(272,273)(274,278)
(275,277)(276,279)(280,293)(281,292)(282,294)(283,290)(284,289)(285,291)
(286,297)(287,296)(288,295)(299,300)(301,305)(302,304)(303,306)(307,320)
(308,319)(309,321)(310,317)(311,316)(312,318)(313,324)(314,323)(315,322)
(325,419)(326,418)(327,420)(328,416)(329,415)(330,417)(331,423)(332,422)
(333,421)(334,410)(335,409)(336,411)(337,407)(338,406)(339,408)(340,414)
(341,413)(342,412)(343,432)(344,431)(345,430)(346,429)(347,428)(348,427)
(349,426)(350,425)(351,424)(352,446)(353,445)(354,447)(355,443)(356,442)
(357,444)(358,450)(359,449)(360,448)(361,437)(362,436)(363,438)(364,434)
(365,433)(366,435)(367,441)(368,440)(369,439)(370,459)(371,458)(372,457)
(373,456)(374,455)(375,454)(376,453)(377,452)(378,451)(379,473)(380,472)
(381,474)(382,470)(383,469)(384,471)(385,477)(386,476)(387,475)(388,464)
(389,463)(390,465)(391,461)(392,460)(393,462)(394,468)(395,467)(396,466)
(397,486)(398,485)(399,484)(400,483)(401,482)(402,481)(403,480)(404,479)
(405,478);
s1 := Sym(486)!(  1, 82)(  2, 84)(  3, 83)(  4, 89)(  5, 88)(  6, 90)(  7, 86)
(  8, 85)(  9, 87)( 10,104)( 11,103)( 12,105)( 13,101)( 14,100)( 15,102)
( 16,108)( 17,107)( 18,106)( 19, 95)( 20, 94)( 21, 96)( 22, 92)( 23, 91)
( 24, 93)( 25, 99)( 26, 98)( 27, 97)( 28,136)( 29,138)( 30,137)( 31,143)
( 32,142)( 33,144)( 34,140)( 35,139)( 36,141)( 37,158)( 38,157)( 39,159)
( 40,155)( 41,154)( 42,156)( 43,162)( 44,161)( 45,160)( 46,149)( 47,148)
( 48,150)( 49,146)( 50,145)( 51,147)( 52,153)( 53,152)( 54,151)( 55,109)
( 56,111)( 57,110)( 58,116)( 59,115)( 60,117)( 61,113)( 62,112)( 63,114)
( 64,131)( 65,130)( 66,132)( 67,128)( 68,127)( 69,129)( 70,135)( 71,134)
( 72,133)( 73,122)( 74,121)( 75,123)( 76,119)( 77,118)( 78,120)( 79,126)
( 80,125)( 81,124)(163,176)(164,175)(165,177)(166,173)(167,172)(168,174)
(169,180)(170,179)(171,178)(181,189)(182,188)(183,187)(184,186)(190,230)
(191,229)(192,231)(193,227)(194,226)(195,228)(196,234)(197,233)(198,232)
(199,221)(200,220)(201,222)(202,218)(203,217)(204,219)(205,225)(206,224)
(207,223)(208,243)(209,242)(210,241)(211,240)(212,239)(213,238)(214,237)
(215,236)(216,235)(244,325)(245,327)(246,326)(247,332)(248,331)(249,333)
(250,329)(251,328)(252,330)(253,347)(254,346)(255,348)(256,344)(257,343)
(258,345)(259,351)(260,350)(261,349)(262,338)(263,337)(264,339)(265,335)
(266,334)(267,336)(268,342)(269,341)(270,340)(271,379)(272,381)(273,380)
(274,386)(275,385)(276,387)(277,383)(278,382)(279,384)(280,401)(281,400)
(282,402)(283,398)(284,397)(285,399)(286,405)(287,404)(288,403)(289,392)
(290,391)(291,393)(292,389)(293,388)(294,390)(295,396)(296,395)(297,394)
(298,352)(299,354)(300,353)(301,359)(302,358)(303,360)(304,356)(305,355)
(306,357)(307,374)(308,373)(309,375)(310,371)(311,370)(312,372)(313,378)
(314,377)(315,376)(316,365)(317,364)(318,366)(319,362)(320,361)(321,363)
(322,369)(323,368)(324,367)(406,419)(407,418)(408,420)(409,416)(410,415)
(411,417)(412,423)(413,422)(414,421)(424,432)(425,431)(426,430)(427,429)
(433,473)(434,472)(435,474)(436,470)(437,469)(438,471)(439,477)(440,476)
(441,475)(442,464)(443,463)(444,465)(445,461)(446,460)(447,462)(448,468)
(449,467)(450,466)(451,486)(452,485)(453,484)(454,483)(455,482)(456,481)
(457,480)(458,479)(459,478);
s2 := Sym(486)!(  1,271)(  2,272)(  3,273)(  4,274)(  5,275)(  6,276)(  7,277)
(  8,278)(  9,279)( 10,280)( 11,281)( 12,282)( 13,283)( 14,284)( 15,285)
( 16,286)( 17,287)( 18,288)( 19,289)( 20,290)( 21,291)( 22,292)( 23,293)
( 24,294)( 25,295)( 26,296)( 27,297)( 28,244)( 29,245)( 30,246)( 31,247)
( 32,248)( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)
( 40,256)( 41,257)( 42,258)( 43,259)( 44,260)( 45,261)( 46,262)( 47,263)
( 48,264)( 49,265)( 50,266)( 51,267)( 52,268)( 53,269)( 54,270)( 55,298)
( 56,299)( 57,300)( 58,301)( 59,302)( 60,303)( 61,304)( 62,305)( 63,306)
( 64,307)( 65,308)( 66,309)( 67,310)( 68,311)( 69,312)( 70,313)( 71,314)
( 72,315)( 73,316)( 74,317)( 75,318)( 76,319)( 77,320)( 78,321)( 79,322)
( 80,323)( 81,324)( 82,352)( 83,353)( 84,354)( 85,355)( 86,356)( 87,357)
( 88,358)( 89,359)( 90,360)( 91,361)( 92,362)( 93,363)( 94,364)( 95,365)
( 96,366)( 97,367)( 98,368)( 99,369)(100,370)(101,371)(102,372)(103,373)
(104,374)(105,375)(106,376)(107,377)(108,378)(109,325)(110,326)(111,327)
(112,328)(113,329)(114,330)(115,331)(116,332)(117,333)(118,334)(119,335)
(120,336)(121,337)(122,338)(123,339)(124,340)(125,341)(126,342)(127,343)
(128,344)(129,345)(130,346)(131,347)(132,348)(133,349)(134,350)(135,351)
(136,379)(137,380)(138,381)(139,382)(140,383)(141,384)(142,385)(143,386)
(144,387)(145,388)(146,389)(147,390)(148,391)(149,392)(150,393)(151,394)
(152,395)(153,396)(154,397)(155,398)(156,399)(157,400)(158,401)(159,402)
(160,403)(161,404)(162,405)(163,433)(164,434)(165,435)(166,436)(167,437)
(168,438)(169,439)(170,440)(171,441)(172,442)(173,443)(174,444)(175,445)
(176,446)(177,447)(178,448)(179,449)(180,450)(181,451)(182,452)(183,453)
(184,454)(185,455)(186,456)(187,457)(188,458)(189,459)(190,406)(191,407)
(192,408)(193,409)(194,410)(195,411)(196,412)(197,413)(198,414)(199,415)
(200,416)(201,417)(202,418)(203,419)(204,420)(205,421)(206,422)(207,423)
(208,424)(209,425)(210,426)(211,427)(212,428)(213,429)(214,430)(215,431)
(216,432)(217,460)(218,461)(219,462)(220,463)(221,464)(222,465)(223,466)
(224,467)(225,468)(226,469)(227,470)(228,471)(229,472)(230,473)(231,474)
(232,475)(233,476)(234,477)(235,478)(236,479)(237,480)(238,481)(239,482)
(240,483)(241,484)(242,485)(243,486);
poly := sub<Sym(486)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope