Polytope of Type {2,488}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,488}*1952
if this polytope has a name.
Group : SmallGroup(1952,157)
Rank : 3
Schlafli Type : {2,488}
Number of vertices, edges, etc : 2, 488, 488
Order of s0s1s2 : 488
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,244}*976
   4-fold quotients : {2,122}*488
   8-fold quotients : {2,61}*244
   61-fold quotients : {2,8}*32
   122-fold quotients : {2,4}*16
   244-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 63)(  5, 62)(  6, 61)(  7, 60)(  8, 59)(  9, 58)( 10, 57)( 11, 56)
( 12, 55)( 13, 54)( 14, 53)( 15, 52)( 16, 51)( 17, 50)( 18, 49)( 19, 48)
( 20, 47)( 21, 46)( 22, 45)( 23, 44)( 24, 43)( 25, 42)( 26, 41)( 27, 40)
( 28, 39)( 29, 38)( 30, 37)( 31, 36)( 32, 35)( 33, 34)( 65,124)( 66,123)
( 67,122)( 68,121)( 69,120)( 70,119)( 71,118)( 72,117)( 73,116)( 74,115)
( 75,114)( 76,113)( 77,112)( 78,111)( 79,110)( 80,109)( 81,108)( 82,107)
( 83,106)( 84,105)( 85,104)( 86,103)( 87,102)( 88,101)( 89,100)( 90, 99)
( 91, 98)( 92, 97)( 93, 96)( 94, 95)(125,186)(126,246)(127,245)(128,244)
(129,243)(130,242)(131,241)(132,240)(133,239)(134,238)(135,237)(136,236)
(137,235)(138,234)(139,233)(140,232)(141,231)(142,230)(143,229)(144,228)
(145,227)(146,226)(147,225)(148,224)(149,223)(150,222)(151,221)(152,220)
(153,219)(154,218)(155,217)(156,216)(157,215)(158,214)(159,213)(160,212)
(161,211)(162,210)(163,209)(164,208)(165,207)(166,206)(167,205)(168,204)
(169,203)(170,202)(171,201)(172,200)(173,199)(174,198)(175,197)(176,196)
(177,195)(178,194)(179,193)(180,192)(181,191)(182,190)(183,189)(184,188)
(185,187)(247,369)(248,429)(249,428)(250,427)(251,426)(252,425)(253,424)
(254,423)(255,422)(256,421)(257,420)(258,419)(259,418)(260,417)(261,416)
(262,415)(263,414)(264,413)(265,412)(266,411)(267,410)(268,409)(269,408)
(270,407)(271,406)(272,405)(273,404)(274,403)(275,402)(276,401)(277,400)
(278,399)(279,398)(280,397)(281,396)(282,395)(283,394)(284,393)(285,392)
(286,391)(287,390)(288,389)(289,388)(290,387)(291,386)(292,385)(293,384)
(294,383)(295,382)(296,381)(297,380)(298,379)(299,378)(300,377)(301,376)
(302,375)(303,374)(304,373)(305,372)(306,371)(307,370)(308,430)(309,490)
(310,489)(311,488)(312,487)(313,486)(314,485)(315,484)(316,483)(317,482)
(318,481)(319,480)(320,479)(321,478)(322,477)(323,476)(324,475)(325,474)
(326,473)(327,472)(328,471)(329,470)(330,469)(331,468)(332,467)(333,466)
(334,465)(335,464)(336,463)(337,462)(338,461)(339,460)(340,459)(341,458)
(342,457)(343,456)(344,455)(345,454)(346,453)(347,452)(348,451)(349,450)
(350,449)(351,448)(352,447)(353,446)(354,445)(355,444)(356,443)(357,442)
(358,441)(359,440)(360,439)(361,438)(362,437)(363,436)(364,435)(365,434)
(366,433)(367,432)(368,431);;
s2 := (  3,248)(  4,247)(  5,307)(  6,306)(  7,305)(  8,304)(  9,303)( 10,302)
( 11,301)( 12,300)( 13,299)( 14,298)( 15,297)( 16,296)( 17,295)( 18,294)
( 19,293)( 20,292)( 21,291)( 22,290)( 23,289)( 24,288)( 25,287)( 26,286)
( 27,285)( 28,284)( 29,283)( 30,282)( 31,281)( 32,280)( 33,279)( 34,278)
( 35,277)( 36,276)( 37,275)( 38,274)( 39,273)( 40,272)( 41,271)( 42,270)
( 43,269)( 44,268)( 45,267)( 46,266)( 47,265)( 48,264)( 49,263)( 50,262)
( 51,261)( 52,260)( 53,259)( 54,258)( 55,257)( 56,256)( 57,255)( 58,254)
( 59,253)( 60,252)( 61,251)( 62,250)( 63,249)( 64,309)( 65,308)( 66,368)
( 67,367)( 68,366)( 69,365)( 70,364)( 71,363)( 72,362)( 73,361)( 74,360)
( 75,359)( 76,358)( 77,357)( 78,356)( 79,355)( 80,354)( 81,353)( 82,352)
( 83,351)( 84,350)( 85,349)( 86,348)( 87,347)( 88,346)( 89,345)( 90,344)
( 91,343)( 92,342)( 93,341)( 94,340)( 95,339)( 96,338)( 97,337)( 98,336)
( 99,335)(100,334)(101,333)(102,332)(103,331)(104,330)(105,329)(106,328)
(107,327)(108,326)(109,325)(110,324)(111,323)(112,322)(113,321)(114,320)
(115,319)(116,318)(117,317)(118,316)(119,315)(120,314)(121,313)(122,312)
(123,311)(124,310)(125,431)(126,430)(127,490)(128,489)(129,488)(130,487)
(131,486)(132,485)(133,484)(134,483)(135,482)(136,481)(137,480)(138,479)
(139,478)(140,477)(141,476)(142,475)(143,474)(144,473)(145,472)(146,471)
(147,470)(148,469)(149,468)(150,467)(151,466)(152,465)(153,464)(154,463)
(155,462)(156,461)(157,460)(158,459)(159,458)(160,457)(161,456)(162,455)
(163,454)(164,453)(165,452)(166,451)(167,450)(168,449)(169,448)(170,447)
(171,446)(172,445)(173,444)(174,443)(175,442)(176,441)(177,440)(178,439)
(179,438)(180,437)(181,436)(182,435)(183,434)(184,433)(185,432)(186,370)
(187,369)(188,429)(189,428)(190,427)(191,426)(192,425)(193,424)(194,423)
(195,422)(196,421)(197,420)(198,419)(199,418)(200,417)(201,416)(202,415)
(203,414)(204,413)(205,412)(206,411)(207,410)(208,409)(209,408)(210,407)
(211,406)(212,405)(213,404)(214,403)(215,402)(216,401)(217,400)(218,399)
(219,398)(220,397)(221,396)(222,395)(223,394)(224,393)(225,392)(226,391)
(227,390)(228,389)(229,388)(230,387)(231,386)(232,385)(233,384)(234,383)
(235,382)(236,381)(237,380)(238,379)(239,378)(240,377)(241,376)(242,375)
(243,374)(244,373)(245,372)(246,371);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(490)!(1,2);
s1 := Sym(490)!(  4, 63)(  5, 62)(  6, 61)(  7, 60)(  8, 59)(  9, 58)( 10, 57)
( 11, 56)( 12, 55)( 13, 54)( 14, 53)( 15, 52)( 16, 51)( 17, 50)( 18, 49)
( 19, 48)( 20, 47)( 21, 46)( 22, 45)( 23, 44)( 24, 43)( 25, 42)( 26, 41)
( 27, 40)( 28, 39)( 29, 38)( 30, 37)( 31, 36)( 32, 35)( 33, 34)( 65,124)
( 66,123)( 67,122)( 68,121)( 69,120)( 70,119)( 71,118)( 72,117)( 73,116)
( 74,115)( 75,114)( 76,113)( 77,112)( 78,111)( 79,110)( 80,109)( 81,108)
( 82,107)( 83,106)( 84,105)( 85,104)( 86,103)( 87,102)( 88,101)( 89,100)
( 90, 99)( 91, 98)( 92, 97)( 93, 96)( 94, 95)(125,186)(126,246)(127,245)
(128,244)(129,243)(130,242)(131,241)(132,240)(133,239)(134,238)(135,237)
(136,236)(137,235)(138,234)(139,233)(140,232)(141,231)(142,230)(143,229)
(144,228)(145,227)(146,226)(147,225)(148,224)(149,223)(150,222)(151,221)
(152,220)(153,219)(154,218)(155,217)(156,216)(157,215)(158,214)(159,213)
(160,212)(161,211)(162,210)(163,209)(164,208)(165,207)(166,206)(167,205)
(168,204)(169,203)(170,202)(171,201)(172,200)(173,199)(174,198)(175,197)
(176,196)(177,195)(178,194)(179,193)(180,192)(181,191)(182,190)(183,189)
(184,188)(185,187)(247,369)(248,429)(249,428)(250,427)(251,426)(252,425)
(253,424)(254,423)(255,422)(256,421)(257,420)(258,419)(259,418)(260,417)
(261,416)(262,415)(263,414)(264,413)(265,412)(266,411)(267,410)(268,409)
(269,408)(270,407)(271,406)(272,405)(273,404)(274,403)(275,402)(276,401)
(277,400)(278,399)(279,398)(280,397)(281,396)(282,395)(283,394)(284,393)
(285,392)(286,391)(287,390)(288,389)(289,388)(290,387)(291,386)(292,385)
(293,384)(294,383)(295,382)(296,381)(297,380)(298,379)(299,378)(300,377)
(301,376)(302,375)(303,374)(304,373)(305,372)(306,371)(307,370)(308,430)
(309,490)(310,489)(311,488)(312,487)(313,486)(314,485)(315,484)(316,483)
(317,482)(318,481)(319,480)(320,479)(321,478)(322,477)(323,476)(324,475)
(325,474)(326,473)(327,472)(328,471)(329,470)(330,469)(331,468)(332,467)
(333,466)(334,465)(335,464)(336,463)(337,462)(338,461)(339,460)(340,459)
(341,458)(342,457)(343,456)(344,455)(345,454)(346,453)(347,452)(348,451)
(349,450)(350,449)(351,448)(352,447)(353,446)(354,445)(355,444)(356,443)
(357,442)(358,441)(359,440)(360,439)(361,438)(362,437)(363,436)(364,435)
(365,434)(366,433)(367,432)(368,431);
s2 := Sym(490)!(  3,248)(  4,247)(  5,307)(  6,306)(  7,305)(  8,304)(  9,303)
( 10,302)( 11,301)( 12,300)( 13,299)( 14,298)( 15,297)( 16,296)( 17,295)
( 18,294)( 19,293)( 20,292)( 21,291)( 22,290)( 23,289)( 24,288)( 25,287)
( 26,286)( 27,285)( 28,284)( 29,283)( 30,282)( 31,281)( 32,280)( 33,279)
( 34,278)( 35,277)( 36,276)( 37,275)( 38,274)( 39,273)( 40,272)( 41,271)
( 42,270)( 43,269)( 44,268)( 45,267)( 46,266)( 47,265)( 48,264)( 49,263)
( 50,262)( 51,261)( 52,260)( 53,259)( 54,258)( 55,257)( 56,256)( 57,255)
( 58,254)( 59,253)( 60,252)( 61,251)( 62,250)( 63,249)( 64,309)( 65,308)
( 66,368)( 67,367)( 68,366)( 69,365)( 70,364)( 71,363)( 72,362)( 73,361)
( 74,360)( 75,359)( 76,358)( 77,357)( 78,356)( 79,355)( 80,354)( 81,353)
( 82,352)( 83,351)( 84,350)( 85,349)( 86,348)( 87,347)( 88,346)( 89,345)
( 90,344)( 91,343)( 92,342)( 93,341)( 94,340)( 95,339)( 96,338)( 97,337)
( 98,336)( 99,335)(100,334)(101,333)(102,332)(103,331)(104,330)(105,329)
(106,328)(107,327)(108,326)(109,325)(110,324)(111,323)(112,322)(113,321)
(114,320)(115,319)(116,318)(117,317)(118,316)(119,315)(120,314)(121,313)
(122,312)(123,311)(124,310)(125,431)(126,430)(127,490)(128,489)(129,488)
(130,487)(131,486)(132,485)(133,484)(134,483)(135,482)(136,481)(137,480)
(138,479)(139,478)(140,477)(141,476)(142,475)(143,474)(144,473)(145,472)
(146,471)(147,470)(148,469)(149,468)(150,467)(151,466)(152,465)(153,464)
(154,463)(155,462)(156,461)(157,460)(158,459)(159,458)(160,457)(161,456)
(162,455)(163,454)(164,453)(165,452)(166,451)(167,450)(168,449)(169,448)
(170,447)(171,446)(172,445)(173,444)(174,443)(175,442)(176,441)(177,440)
(178,439)(179,438)(180,437)(181,436)(182,435)(183,434)(184,433)(185,432)
(186,370)(187,369)(188,429)(189,428)(190,427)(191,426)(192,425)(193,424)
(194,423)(195,422)(196,421)(197,420)(198,419)(199,418)(200,417)(201,416)
(202,415)(203,414)(204,413)(205,412)(206,411)(207,410)(208,409)(209,408)
(210,407)(211,406)(212,405)(213,404)(214,403)(215,402)(216,401)(217,400)
(218,399)(219,398)(220,397)(221,396)(222,395)(223,394)(224,393)(225,392)
(226,391)(227,390)(228,389)(229,388)(230,387)(231,386)(232,385)(233,384)
(234,383)(235,382)(236,381)(237,380)(238,379)(239,378)(240,377)(241,376)
(242,375)(243,374)(244,373)(245,372)(246,371);
poly := sub<Sym(490)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope