include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {488,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {488,2}*1952
if this polytope has a name.
Group : SmallGroup(1952,157)
Rank : 3
Schlafli Type : {488,2}
Number of vertices, edges, etc : 488, 488, 2
Order of s0s1s2 : 488
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {244,2}*976
4-fold quotients : {122,2}*488
8-fold quotients : {61,2}*244
61-fold quotients : {8,2}*32
122-fold quotients : {4,2}*16
244-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 61)( 3, 60)( 4, 59)( 5, 58)( 6, 57)( 7, 56)( 8, 55)( 9, 54)
( 10, 53)( 11, 52)( 12, 51)( 13, 50)( 14, 49)( 15, 48)( 16, 47)( 17, 46)
( 18, 45)( 19, 44)( 20, 43)( 21, 42)( 22, 41)( 23, 40)( 24, 39)( 25, 38)
( 26, 37)( 27, 36)( 28, 35)( 29, 34)( 30, 33)( 31, 32)( 63,122)( 64,121)
( 65,120)( 66,119)( 67,118)( 68,117)( 69,116)( 70,115)( 71,114)( 72,113)
( 73,112)( 74,111)( 75,110)( 76,109)( 77,108)( 78,107)( 79,106)( 80,105)
( 81,104)( 82,103)( 83,102)( 84,101)( 85,100)( 86, 99)( 87, 98)( 88, 97)
( 89, 96)( 90, 95)( 91, 94)( 92, 93)(123,184)(124,244)(125,243)(126,242)
(127,241)(128,240)(129,239)(130,238)(131,237)(132,236)(133,235)(134,234)
(135,233)(136,232)(137,231)(138,230)(139,229)(140,228)(141,227)(142,226)
(143,225)(144,224)(145,223)(146,222)(147,221)(148,220)(149,219)(150,218)
(151,217)(152,216)(153,215)(154,214)(155,213)(156,212)(157,211)(158,210)
(159,209)(160,208)(161,207)(162,206)(163,205)(164,204)(165,203)(166,202)
(167,201)(168,200)(169,199)(170,198)(171,197)(172,196)(173,195)(174,194)
(175,193)(176,192)(177,191)(178,190)(179,189)(180,188)(181,187)(182,186)
(183,185)(245,367)(246,427)(247,426)(248,425)(249,424)(250,423)(251,422)
(252,421)(253,420)(254,419)(255,418)(256,417)(257,416)(258,415)(259,414)
(260,413)(261,412)(262,411)(263,410)(264,409)(265,408)(266,407)(267,406)
(268,405)(269,404)(270,403)(271,402)(272,401)(273,400)(274,399)(275,398)
(276,397)(277,396)(278,395)(279,394)(280,393)(281,392)(282,391)(283,390)
(284,389)(285,388)(286,387)(287,386)(288,385)(289,384)(290,383)(291,382)
(292,381)(293,380)(294,379)(295,378)(296,377)(297,376)(298,375)(299,374)
(300,373)(301,372)(302,371)(303,370)(304,369)(305,368)(306,428)(307,488)
(308,487)(309,486)(310,485)(311,484)(312,483)(313,482)(314,481)(315,480)
(316,479)(317,478)(318,477)(319,476)(320,475)(321,474)(322,473)(323,472)
(324,471)(325,470)(326,469)(327,468)(328,467)(329,466)(330,465)(331,464)
(332,463)(333,462)(334,461)(335,460)(336,459)(337,458)(338,457)(339,456)
(340,455)(341,454)(342,453)(343,452)(344,451)(345,450)(346,449)(347,448)
(348,447)(349,446)(350,445)(351,444)(352,443)(353,442)(354,441)(355,440)
(356,439)(357,438)(358,437)(359,436)(360,435)(361,434)(362,433)(363,432)
(364,431)(365,430)(366,429);;
s1 := ( 1,246)( 2,245)( 3,305)( 4,304)( 5,303)( 6,302)( 7,301)( 8,300)
( 9,299)( 10,298)( 11,297)( 12,296)( 13,295)( 14,294)( 15,293)( 16,292)
( 17,291)( 18,290)( 19,289)( 20,288)( 21,287)( 22,286)( 23,285)( 24,284)
( 25,283)( 26,282)( 27,281)( 28,280)( 29,279)( 30,278)( 31,277)( 32,276)
( 33,275)( 34,274)( 35,273)( 36,272)( 37,271)( 38,270)( 39,269)( 40,268)
( 41,267)( 42,266)( 43,265)( 44,264)( 45,263)( 46,262)( 47,261)( 48,260)
( 49,259)( 50,258)( 51,257)( 52,256)( 53,255)( 54,254)( 55,253)( 56,252)
( 57,251)( 58,250)( 59,249)( 60,248)( 61,247)( 62,307)( 63,306)( 64,366)
( 65,365)( 66,364)( 67,363)( 68,362)( 69,361)( 70,360)( 71,359)( 72,358)
( 73,357)( 74,356)( 75,355)( 76,354)( 77,353)( 78,352)( 79,351)( 80,350)
( 81,349)( 82,348)( 83,347)( 84,346)( 85,345)( 86,344)( 87,343)( 88,342)
( 89,341)( 90,340)( 91,339)( 92,338)( 93,337)( 94,336)( 95,335)( 96,334)
( 97,333)( 98,332)( 99,331)(100,330)(101,329)(102,328)(103,327)(104,326)
(105,325)(106,324)(107,323)(108,322)(109,321)(110,320)(111,319)(112,318)
(113,317)(114,316)(115,315)(116,314)(117,313)(118,312)(119,311)(120,310)
(121,309)(122,308)(123,429)(124,428)(125,488)(126,487)(127,486)(128,485)
(129,484)(130,483)(131,482)(132,481)(133,480)(134,479)(135,478)(136,477)
(137,476)(138,475)(139,474)(140,473)(141,472)(142,471)(143,470)(144,469)
(145,468)(146,467)(147,466)(148,465)(149,464)(150,463)(151,462)(152,461)
(153,460)(154,459)(155,458)(156,457)(157,456)(158,455)(159,454)(160,453)
(161,452)(162,451)(163,450)(164,449)(165,448)(166,447)(167,446)(168,445)
(169,444)(170,443)(171,442)(172,441)(173,440)(174,439)(175,438)(176,437)
(177,436)(178,435)(179,434)(180,433)(181,432)(182,431)(183,430)(184,368)
(185,367)(186,427)(187,426)(188,425)(189,424)(190,423)(191,422)(192,421)
(193,420)(194,419)(195,418)(196,417)(197,416)(198,415)(199,414)(200,413)
(201,412)(202,411)(203,410)(204,409)(205,408)(206,407)(207,406)(208,405)
(209,404)(210,403)(211,402)(212,401)(213,400)(214,399)(215,398)(216,397)
(217,396)(218,395)(219,394)(220,393)(221,392)(222,391)(223,390)(224,389)
(225,388)(226,387)(227,386)(228,385)(229,384)(230,383)(231,382)(232,381)
(233,380)(234,379)(235,378)(236,377)(237,376)(238,375)(239,374)(240,373)
(241,372)(242,371)(243,370)(244,369);;
s2 := (489,490);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(490)!( 2, 61)( 3, 60)( 4, 59)( 5, 58)( 6, 57)( 7, 56)( 8, 55)
( 9, 54)( 10, 53)( 11, 52)( 12, 51)( 13, 50)( 14, 49)( 15, 48)( 16, 47)
( 17, 46)( 18, 45)( 19, 44)( 20, 43)( 21, 42)( 22, 41)( 23, 40)( 24, 39)
( 25, 38)( 26, 37)( 27, 36)( 28, 35)( 29, 34)( 30, 33)( 31, 32)( 63,122)
( 64,121)( 65,120)( 66,119)( 67,118)( 68,117)( 69,116)( 70,115)( 71,114)
( 72,113)( 73,112)( 74,111)( 75,110)( 76,109)( 77,108)( 78,107)( 79,106)
( 80,105)( 81,104)( 82,103)( 83,102)( 84,101)( 85,100)( 86, 99)( 87, 98)
( 88, 97)( 89, 96)( 90, 95)( 91, 94)( 92, 93)(123,184)(124,244)(125,243)
(126,242)(127,241)(128,240)(129,239)(130,238)(131,237)(132,236)(133,235)
(134,234)(135,233)(136,232)(137,231)(138,230)(139,229)(140,228)(141,227)
(142,226)(143,225)(144,224)(145,223)(146,222)(147,221)(148,220)(149,219)
(150,218)(151,217)(152,216)(153,215)(154,214)(155,213)(156,212)(157,211)
(158,210)(159,209)(160,208)(161,207)(162,206)(163,205)(164,204)(165,203)
(166,202)(167,201)(168,200)(169,199)(170,198)(171,197)(172,196)(173,195)
(174,194)(175,193)(176,192)(177,191)(178,190)(179,189)(180,188)(181,187)
(182,186)(183,185)(245,367)(246,427)(247,426)(248,425)(249,424)(250,423)
(251,422)(252,421)(253,420)(254,419)(255,418)(256,417)(257,416)(258,415)
(259,414)(260,413)(261,412)(262,411)(263,410)(264,409)(265,408)(266,407)
(267,406)(268,405)(269,404)(270,403)(271,402)(272,401)(273,400)(274,399)
(275,398)(276,397)(277,396)(278,395)(279,394)(280,393)(281,392)(282,391)
(283,390)(284,389)(285,388)(286,387)(287,386)(288,385)(289,384)(290,383)
(291,382)(292,381)(293,380)(294,379)(295,378)(296,377)(297,376)(298,375)
(299,374)(300,373)(301,372)(302,371)(303,370)(304,369)(305,368)(306,428)
(307,488)(308,487)(309,486)(310,485)(311,484)(312,483)(313,482)(314,481)
(315,480)(316,479)(317,478)(318,477)(319,476)(320,475)(321,474)(322,473)
(323,472)(324,471)(325,470)(326,469)(327,468)(328,467)(329,466)(330,465)
(331,464)(332,463)(333,462)(334,461)(335,460)(336,459)(337,458)(338,457)
(339,456)(340,455)(341,454)(342,453)(343,452)(344,451)(345,450)(346,449)
(347,448)(348,447)(349,446)(350,445)(351,444)(352,443)(353,442)(354,441)
(355,440)(356,439)(357,438)(358,437)(359,436)(360,435)(361,434)(362,433)
(363,432)(364,431)(365,430)(366,429);
s1 := Sym(490)!( 1,246)( 2,245)( 3,305)( 4,304)( 5,303)( 6,302)( 7,301)
( 8,300)( 9,299)( 10,298)( 11,297)( 12,296)( 13,295)( 14,294)( 15,293)
( 16,292)( 17,291)( 18,290)( 19,289)( 20,288)( 21,287)( 22,286)( 23,285)
( 24,284)( 25,283)( 26,282)( 27,281)( 28,280)( 29,279)( 30,278)( 31,277)
( 32,276)( 33,275)( 34,274)( 35,273)( 36,272)( 37,271)( 38,270)( 39,269)
( 40,268)( 41,267)( 42,266)( 43,265)( 44,264)( 45,263)( 46,262)( 47,261)
( 48,260)( 49,259)( 50,258)( 51,257)( 52,256)( 53,255)( 54,254)( 55,253)
( 56,252)( 57,251)( 58,250)( 59,249)( 60,248)( 61,247)( 62,307)( 63,306)
( 64,366)( 65,365)( 66,364)( 67,363)( 68,362)( 69,361)( 70,360)( 71,359)
( 72,358)( 73,357)( 74,356)( 75,355)( 76,354)( 77,353)( 78,352)( 79,351)
( 80,350)( 81,349)( 82,348)( 83,347)( 84,346)( 85,345)( 86,344)( 87,343)
( 88,342)( 89,341)( 90,340)( 91,339)( 92,338)( 93,337)( 94,336)( 95,335)
( 96,334)( 97,333)( 98,332)( 99,331)(100,330)(101,329)(102,328)(103,327)
(104,326)(105,325)(106,324)(107,323)(108,322)(109,321)(110,320)(111,319)
(112,318)(113,317)(114,316)(115,315)(116,314)(117,313)(118,312)(119,311)
(120,310)(121,309)(122,308)(123,429)(124,428)(125,488)(126,487)(127,486)
(128,485)(129,484)(130,483)(131,482)(132,481)(133,480)(134,479)(135,478)
(136,477)(137,476)(138,475)(139,474)(140,473)(141,472)(142,471)(143,470)
(144,469)(145,468)(146,467)(147,466)(148,465)(149,464)(150,463)(151,462)
(152,461)(153,460)(154,459)(155,458)(156,457)(157,456)(158,455)(159,454)
(160,453)(161,452)(162,451)(163,450)(164,449)(165,448)(166,447)(167,446)
(168,445)(169,444)(170,443)(171,442)(172,441)(173,440)(174,439)(175,438)
(176,437)(177,436)(178,435)(179,434)(180,433)(181,432)(182,431)(183,430)
(184,368)(185,367)(186,427)(187,426)(188,425)(189,424)(190,423)(191,422)
(192,421)(193,420)(194,419)(195,418)(196,417)(197,416)(198,415)(199,414)
(200,413)(201,412)(202,411)(203,410)(204,409)(205,408)(206,407)(207,406)
(208,405)(209,404)(210,403)(211,402)(212,401)(213,400)(214,399)(215,398)
(216,397)(217,396)(218,395)(219,394)(220,393)(221,392)(222,391)(223,390)
(224,389)(225,388)(226,387)(227,386)(228,385)(229,384)(230,383)(231,382)
(232,381)(233,380)(234,379)(235,378)(236,377)(237,376)(238,375)(239,374)
(240,373)(241,372)(242,371)(243,370)(244,369);
s2 := Sym(490)!(489,490);
poly := sub<Sym(490)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope