include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,492}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,492}*1968
if this polytope has a name.
Group : SmallGroup(1968,173)
Rank : 3
Schlafli Type : {2,492}
Number of vertices, edges, etc : 2, 492, 492
Order of s0s1s2 : 492
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,246}*984
3-fold quotients : {2,164}*656
4-fold quotients : {2,123}*492
6-fold quotients : {2,82}*328
12-fold quotients : {2,41}*164
41-fold quotients : {2,12}*48
82-fold quotients : {2,6}*24
123-fold quotients : {2,4}*16
164-fold quotients : {2,3}*12
246-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 43)( 5, 42)( 6, 41)( 7, 40)( 8, 39)( 9, 38)( 10, 37)( 11, 36)
( 12, 35)( 13, 34)( 14, 33)( 15, 32)( 16, 31)( 17, 30)( 18, 29)( 19, 28)
( 20, 27)( 21, 26)( 22, 25)( 23, 24)( 44, 85)( 45,125)( 46,124)( 47,123)
( 48,122)( 49,121)( 50,120)( 51,119)( 52,118)( 53,117)( 54,116)( 55,115)
( 56,114)( 57,113)( 58,112)( 59,111)( 60,110)( 61,109)( 62,108)( 63,107)
( 64,106)( 65,105)( 66,104)( 67,103)( 68,102)( 69,101)( 70,100)( 71, 99)
( 72, 98)( 73, 97)( 74, 96)( 75, 95)( 76, 94)( 77, 93)( 78, 92)( 79, 91)
( 80, 90)( 81, 89)( 82, 88)( 83, 87)( 84, 86)(127,166)(128,165)(129,164)
(130,163)(131,162)(132,161)(133,160)(134,159)(135,158)(136,157)(137,156)
(138,155)(139,154)(140,153)(141,152)(142,151)(143,150)(144,149)(145,148)
(146,147)(167,208)(168,248)(169,247)(170,246)(171,245)(172,244)(173,243)
(174,242)(175,241)(176,240)(177,239)(178,238)(179,237)(180,236)(181,235)
(182,234)(183,233)(184,232)(185,231)(186,230)(187,229)(188,228)(189,227)
(190,226)(191,225)(192,224)(193,223)(194,222)(195,221)(196,220)(197,219)
(198,218)(199,217)(200,216)(201,215)(202,214)(203,213)(204,212)(205,211)
(206,210)(207,209)(249,372)(250,412)(251,411)(252,410)(253,409)(254,408)
(255,407)(256,406)(257,405)(258,404)(259,403)(260,402)(261,401)(262,400)
(263,399)(264,398)(265,397)(266,396)(267,395)(268,394)(269,393)(270,392)
(271,391)(272,390)(273,389)(274,388)(275,387)(276,386)(277,385)(278,384)
(279,383)(280,382)(281,381)(282,380)(283,379)(284,378)(285,377)(286,376)
(287,375)(288,374)(289,373)(290,454)(291,494)(292,493)(293,492)(294,491)
(295,490)(296,489)(297,488)(298,487)(299,486)(300,485)(301,484)(302,483)
(303,482)(304,481)(305,480)(306,479)(307,478)(308,477)(309,476)(310,475)
(311,474)(312,473)(313,472)(314,471)(315,470)(316,469)(317,468)(318,467)
(319,466)(320,465)(321,464)(322,463)(323,462)(324,461)(325,460)(326,459)
(327,458)(328,457)(329,456)(330,455)(331,413)(332,453)(333,452)(334,451)
(335,450)(336,449)(337,448)(338,447)(339,446)(340,445)(341,444)(342,443)
(343,442)(344,441)(345,440)(346,439)(347,438)(348,437)(349,436)(350,435)
(351,434)(352,433)(353,432)(354,431)(355,430)(356,429)(357,428)(358,427)
(359,426)(360,425)(361,424)(362,423)(363,422)(364,421)(365,420)(366,419)
(367,418)(368,417)(369,416)(370,415)(371,414);;
s2 := ( 3,291)( 4,290)( 5,330)( 6,329)( 7,328)( 8,327)( 9,326)( 10,325)
( 11,324)( 12,323)( 13,322)( 14,321)( 15,320)( 16,319)( 17,318)( 18,317)
( 19,316)( 20,315)( 21,314)( 22,313)( 23,312)( 24,311)( 25,310)( 26,309)
( 27,308)( 28,307)( 29,306)( 30,305)( 31,304)( 32,303)( 33,302)( 34,301)
( 35,300)( 36,299)( 37,298)( 38,297)( 39,296)( 40,295)( 41,294)( 42,293)
( 43,292)( 44,250)( 45,249)( 46,289)( 47,288)( 48,287)( 49,286)( 50,285)
( 51,284)( 52,283)( 53,282)( 54,281)( 55,280)( 56,279)( 57,278)( 58,277)
( 59,276)( 60,275)( 61,274)( 62,273)( 63,272)( 64,271)( 65,270)( 66,269)
( 67,268)( 68,267)( 69,266)( 70,265)( 71,264)( 72,263)( 73,262)( 74,261)
( 75,260)( 76,259)( 77,258)( 78,257)( 79,256)( 80,255)( 81,254)( 82,253)
( 83,252)( 84,251)( 85,332)( 86,331)( 87,371)( 88,370)( 89,369)( 90,368)
( 91,367)( 92,366)( 93,365)( 94,364)( 95,363)( 96,362)( 97,361)( 98,360)
( 99,359)(100,358)(101,357)(102,356)(103,355)(104,354)(105,353)(106,352)
(107,351)(108,350)(109,349)(110,348)(111,347)(112,346)(113,345)(114,344)
(115,343)(116,342)(117,341)(118,340)(119,339)(120,338)(121,337)(122,336)
(123,335)(124,334)(125,333)(126,414)(127,413)(128,453)(129,452)(130,451)
(131,450)(132,449)(133,448)(134,447)(135,446)(136,445)(137,444)(138,443)
(139,442)(140,441)(141,440)(142,439)(143,438)(144,437)(145,436)(146,435)
(147,434)(148,433)(149,432)(150,431)(151,430)(152,429)(153,428)(154,427)
(155,426)(156,425)(157,424)(158,423)(159,422)(160,421)(161,420)(162,419)
(163,418)(164,417)(165,416)(166,415)(167,373)(168,372)(169,412)(170,411)
(171,410)(172,409)(173,408)(174,407)(175,406)(176,405)(177,404)(178,403)
(179,402)(180,401)(181,400)(182,399)(183,398)(184,397)(185,396)(186,395)
(187,394)(188,393)(189,392)(190,391)(191,390)(192,389)(193,388)(194,387)
(195,386)(196,385)(197,384)(198,383)(199,382)(200,381)(201,380)(202,379)
(203,378)(204,377)(205,376)(206,375)(207,374)(208,455)(209,454)(210,494)
(211,493)(212,492)(213,491)(214,490)(215,489)(216,488)(217,487)(218,486)
(219,485)(220,484)(221,483)(222,482)(223,481)(224,480)(225,479)(226,478)
(227,477)(228,476)(229,475)(230,474)(231,473)(232,472)(233,471)(234,470)
(235,469)(236,468)(237,467)(238,466)(239,465)(240,464)(241,463)(242,462)
(243,461)(244,460)(245,459)(246,458)(247,457)(248,456);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(494)!(1,2);
s1 := Sym(494)!( 4, 43)( 5, 42)( 6, 41)( 7, 40)( 8, 39)( 9, 38)( 10, 37)
( 11, 36)( 12, 35)( 13, 34)( 14, 33)( 15, 32)( 16, 31)( 17, 30)( 18, 29)
( 19, 28)( 20, 27)( 21, 26)( 22, 25)( 23, 24)( 44, 85)( 45,125)( 46,124)
( 47,123)( 48,122)( 49,121)( 50,120)( 51,119)( 52,118)( 53,117)( 54,116)
( 55,115)( 56,114)( 57,113)( 58,112)( 59,111)( 60,110)( 61,109)( 62,108)
( 63,107)( 64,106)( 65,105)( 66,104)( 67,103)( 68,102)( 69,101)( 70,100)
( 71, 99)( 72, 98)( 73, 97)( 74, 96)( 75, 95)( 76, 94)( 77, 93)( 78, 92)
( 79, 91)( 80, 90)( 81, 89)( 82, 88)( 83, 87)( 84, 86)(127,166)(128,165)
(129,164)(130,163)(131,162)(132,161)(133,160)(134,159)(135,158)(136,157)
(137,156)(138,155)(139,154)(140,153)(141,152)(142,151)(143,150)(144,149)
(145,148)(146,147)(167,208)(168,248)(169,247)(170,246)(171,245)(172,244)
(173,243)(174,242)(175,241)(176,240)(177,239)(178,238)(179,237)(180,236)
(181,235)(182,234)(183,233)(184,232)(185,231)(186,230)(187,229)(188,228)
(189,227)(190,226)(191,225)(192,224)(193,223)(194,222)(195,221)(196,220)
(197,219)(198,218)(199,217)(200,216)(201,215)(202,214)(203,213)(204,212)
(205,211)(206,210)(207,209)(249,372)(250,412)(251,411)(252,410)(253,409)
(254,408)(255,407)(256,406)(257,405)(258,404)(259,403)(260,402)(261,401)
(262,400)(263,399)(264,398)(265,397)(266,396)(267,395)(268,394)(269,393)
(270,392)(271,391)(272,390)(273,389)(274,388)(275,387)(276,386)(277,385)
(278,384)(279,383)(280,382)(281,381)(282,380)(283,379)(284,378)(285,377)
(286,376)(287,375)(288,374)(289,373)(290,454)(291,494)(292,493)(293,492)
(294,491)(295,490)(296,489)(297,488)(298,487)(299,486)(300,485)(301,484)
(302,483)(303,482)(304,481)(305,480)(306,479)(307,478)(308,477)(309,476)
(310,475)(311,474)(312,473)(313,472)(314,471)(315,470)(316,469)(317,468)
(318,467)(319,466)(320,465)(321,464)(322,463)(323,462)(324,461)(325,460)
(326,459)(327,458)(328,457)(329,456)(330,455)(331,413)(332,453)(333,452)
(334,451)(335,450)(336,449)(337,448)(338,447)(339,446)(340,445)(341,444)
(342,443)(343,442)(344,441)(345,440)(346,439)(347,438)(348,437)(349,436)
(350,435)(351,434)(352,433)(353,432)(354,431)(355,430)(356,429)(357,428)
(358,427)(359,426)(360,425)(361,424)(362,423)(363,422)(364,421)(365,420)
(366,419)(367,418)(368,417)(369,416)(370,415)(371,414);
s2 := Sym(494)!( 3,291)( 4,290)( 5,330)( 6,329)( 7,328)( 8,327)( 9,326)
( 10,325)( 11,324)( 12,323)( 13,322)( 14,321)( 15,320)( 16,319)( 17,318)
( 18,317)( 19,316)( 20,315)( 21,314)( 22,313)( 23,312)( 24,311)( 25,310)
( 26,309)( 27,308)( 28,307)( 29,306)( 30,305)( 31,304)( 32,303)( 33,302)
( 34,301)( 35,300)( 36,299)( 37,298)( 38,297)( 39,296)( 40,295)( 41,294)
( 42,293)( 43,292)( 44,250)( 45,249)( 46,289)( 47,288)( 48,287)( 49,286)
( 50,285)( 51,284)( 52,283)( 53,282)( 54,281)( 55,280)( 56,279)( 57,278)
( 58,277)( 59,276)( 60,275)( 61,274)( 62,273)( 63,272)( 64,271)( 65,270)
( 66,269)( 67,268)( 68,267)( 69,266)( 70,265)( 71,264)( 72,263)( 73,262)
( 74,261)( 75,260)( 76,259)( 77,258)( 78,257)( 79,256)( 80,255)( 81,254)
( 82,253)( 83,252)( 84,251)( 85,332)( 86,331)( 87,371)( 88,370)( 89,369)
( 90,368)( 91,367)( 92,366)( 93,365)( 94,364)( 95,363)( 96,362)( 97,361)
( 98,360)( 99,359)(100,358)(101,357)(102,356)(103,355)(104,354)(105,353)
(106,352)(107,351)(108,350)(109,349)(110,348)(111,347)(112,346)(113,345)
(114,344)(115,343)(116,342)(117,341)(118,340)(119,339)(120,338)(121,337)
(122,336)(123,335)(124,334)(125,333)(126,414)(127,413)(128,453)(129,452)
(130,451)(131,450)(132,449)(133,448)(134,447)(135,446)(136,445)(137,444)
(138,443)(139,442)(140,441)(141,440)(142,439)(143,438)(144,437)(145,436)
(146,435)(147,434)(148,433)(149,432)(150,431)(151,430)(152,429)(153,428)
(154,427)(155,426)(156,425)(157,424)(158,423)(159,422)(160,421)(161,420)
(162,419)(163,418)(164,417)(165,416)(166,415)(167,373)(168,372)(169,412)
(170,411)(171,410)(172,409)(173,408)(174,407)(175,406)(176,405)(177,404)
(178,403)(179,402)(180,401)(181,400)(182,399)(183,398)(184,397)(185,396)
(186,395)(187,394)(188,393)(189,392)(190,391)(191,390)(192,389)(193,388)
(194,387)(195,386)(196,385)(197,384)(198,383)(199,382)(200,381)(201,380)
(202,379)(203,378)(204,377)(205,376)(206,375)(207,374)(208,455)(209,454)
(210,494)(211,493)(212,492)(213,491)(214,490)(215,489)(216,488)(217,487)
(218,486)(219,485)(220,484)(221,483)(222,482)(223,481)(224,480)(225,479)
(226,478)(227,477)(228,476)(229,475)(230,474)(231,473)(232,472)(233,471)
(234,470)(235,469)(236,468)(237,467)(238,466)(239,465)(240,464)(241,463)
(242,462)(243,461)(244,460)(245,459)(246,458)(247,457)(248,456);
poly := sub<Sym(494)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope