Polytope of Type {492}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {492}*984
Also Known As : 492-gon, {492}. if this polytope has another name.
Group : SmallGroup(984,27)
Rank : 2
Schlafli Type : {492}
Number of vertices, edges, etc : 492, 492
Order of s0s1 : 492
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {492,2} of size 1968
Vertex Figure Of :
   {2,492} of size 1968
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {246}*492
   3-fold quotients : {164}*328
   4-fold quotients : {123}*246
   6-fold quotients : {82}*164
   12-fold quotients : {41}*82
   41-fold quotients : {12}*24
   82-fold quotients : {6}*12
   123-fold quotients : {4}*8
   164-fold quotients : {3}*6
   246-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {984}*1968
Permutation Representation (GAP) :
s0 := (  2, 41)(  3, 40)(  4, 39)(  5, 38)(  6, 37)(  7, 36)(  8, 35)(  9, 34)
( 10, 33)( 11, 32)( 12, 31)( 13, 30)( 14, 29)( 15, 28)( 16, 27)( 17, 26)
( 18, 25)( 19, 24)( 20, 23)( 21, 22)( 42, 83)( 43,123)( 44,122)( 45,121)
( 46,120)( 47,119)( 48,118)( 49,117)( 50,116)( 51,115)( 52,114)( 53,113)
( 54,112)( 55,111)( 56,110)( 57,109)( 58,108)( 59,107)( 60,106)( 61,105)
( 62,104)( 63,103)( 64,102)( 65,101)( 66,100)( 67, 99)( 68, 98)( 69, 97)
( 70, 96)( 71, 95)( 72, 94)( 73, 93)( 74, 92)( 75, 91)( 76, 90)( 77, 89)
( 78, 88)( 79, 87)( 80, 86)( 81, 85)( 82, 84)(125,164)(126,163)(127,162)
(128,161)(129,160)(130,159)(131,158)(132,157)(133,156)(134,155)(135,154)
(136,153)(137,152)(138,151)(139,150)(140,149)(141,148)(142,147)(143,146)
(144,145)(165,206)(166,246)(167,245)(168,244)(169,243)(170,242)(171,241)
(172,240)(173,239)(174,238)(175,237)(176,236)(177,235)(178,234)(179,233)
(180,232)(181,231)(182,230)(183,229)(184,228)(185,227)(186,226)(187,225)
(188,224)(189,223)(190,222)(191,221)(192,220)(193,219)(194,218)(195,217)
(196,216)(197,215)(198,214)(199,213)(200,212)(201,211)(202,210)(203,209)
(204,208)(205,207)(247,370)(248,410)(249,409)(250,408)(251,407)(252,406)
(253,405)(254,404)(255,403)(256,402)(257,401)(258,400)(259,399)(260,398)
(261,397)(262,396)(263,395)(264,394)(265,393)(266,392)(267,391)(268,390)
(269,389)(270,388)(271,387)(272,386)(273,385)(274,384)(275,383)(276,382)
(277,381)(278,380)(279,379)(280,378)(281,377)(282,376)(283,375)(284,374)
(285,373)(286,372)(287,371)(288,452)(289,492)(290,491)(291,490)(292,489)
(293,488)(294,487)(295,486)(296,485)(297,484)(298,483)(299,482)(300,481)
(301,480)(302,479)(303,478)(304,477)(305,476)(306,475)(307,474)(308,473)
(309,472)(310,471)(311,470)(312,469)(313,468)(314,467)(315,466)(316,465)
(317,464)(318,463)(319,462)(320,461)(321,460)(322,459)(323,458)(324,457)
(325,456)(326,455)(327,454)(328,453)(329,411)(330,451)(331,450)(332,449)
(333,448)(334,447)(335,446)(336,445)(337,444)(338,443)(339,442)(340,441)
(341,440)(342,439)(343,438)(344,437)(345,436)(346,435)(347,434)(348,433)
(349,432)(350,431)(351,430)(352,429)(353,428)(354,427)(355,426)(356,425)
(357,424)(358,423)(359,422)(360,421)(361,420)(362,419)(363,418)(364,417)
(365,416)(366,415)(367,414)(368,413)(369,412);;
s1 := (  1,289)(  2,288)(  3,328)(  4,327)(  5,326)(  6,325)(  7,324)(  8,323)
(  9,322)( 10,321)( 11,320)( 12,319)( 13,318)( 14,317)( 15,316)( 16,315)
( 17,314)( 18,313)( 19,312)( 20,311)( 21,310)( 22,309)( 23,308)( 24,307)
( 25,306)( 26,305)( 27,304)( 28,303)( 29,302)( 30,301)( 31,300)( 32,299)
( 33,298)( 34,297)( 35,296)( 36,295)( 37,294)( 38,293)( 39,292)( 40,291)
( 41,290)( 42,248)( 43,247)( 44,287)( 45,286)( 46,285)( 47,284)( 48,283)
( 49,282)( 50,281)( 51,280)( 52,279)( 53,278)( 54,277)( 55,276)( 56,275)
( 57,274)( 58,273)( 59,272)( 60,271)( 61,270)( 62,269)( 63,268)( 64,267)
( 65,266)( 66,265)( 67,264)( 68,263)( 69,262)( 70,261)( 71,260)( 72,259)
( 73,258)( 74,257)( 75,256)( 76,255)( 77,254)( 78,253)( 79,252)( 80,251)
( 81,250)( 82,249)( 83,330)( 84,329)( 85,369)( 86,368)( 87,367)( 88,366)
( 89,365)( 90,364)( 91,363)( 92,362)( 93,361)( 94,360)( 95,359)( 96,358)
( 97,357)( 98,356)( 99,355)(100,354)(101,353)(102,352)(103,351)(104,350)
(105,349)(106,348)(107,347)(108,346)(109,345)(110,344)(111,343)(112,342)
(113,341)(114,340)(115,339)(116,338)(117,337)(118,336)(119,335)(120,334)
(121,333)(122,332)(123,331)(124,412)(125,411)(126,451)(127,450)(128,449)
(129,448)(130,447)(131,446)(132,445)(133,444)(134,443)(135,442)(136,441)
(137,440)(138,439)(139,438)(140,437)(141,436)(142,435)(143,434)(144,433)
(145,432)(146,431)(147,430)(148,429)(149,428)(150,427)(151,426)(152,425)
(153,424)(154,423)(155,422)(156,421)(157,420)(158,419)(159,418)(160,417)
(161,416)(162,415)(163,414)(164,413)(165,371)(166,370)(167,410)(168,409)
(169,408)(170,407)(171,406)(172,405)(173,404)(174,403)(175,402)(176,401)
(177,400)(178,399)(179,398)(180,397)(181,396)(182,395)(183,394)(184,393)
(185,392)(186,391)(187,390)(188,389)(189,388)(190,387)(191,386)(192,385)
(193,384)(194,383)(195,382)(196,381)(197,380)(198,379)(199,378)(200,377)
(201,376)(202,375)(203,374)(204,373)(205,372)(206,453)(207,452)(208,492)
(209,491)(210,490)(211,489)(212,488)(213,487)(214,486)(215,485)(216,484)
(217,483)(218,482)(219,481)(220,480)(221,479)(222,478)(223,477)(224,476)
(225,475)(226,474)(227,473)(228,472)(229,471)(230,470)(231,469)(232,468)
(233,467)(234,466)(235,465)(236,464)(237,463)(238,462)(239,461)(240,460)
(241,459)(242,458)(243,457)(244,456)(245,455)(246,454);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(492)!(  2, 41)(  3, 40)(  4, 39)(  5, 38)(  6, 37)(  7, 36)(  8, 35)
(  9, 34)( 10, 33)( 11, 32)( 12, 31)( 13, 30)( 14, 29)( 15, 28)( 16, 27)
( 17, 26)( 18, 25)( 19, 24)( 20, 23)( 21, 22)( 42, 83)( 43,123)( 44,122)
( 45,121)( 46,120)( 47,119)( 48,118)( 49,117)( 50,116)( 51,115)( 52,114)
( 53,113)( 54,112)( 55,111)( 56,110)( 57,109)( 58,108)( 59,107)( 60,106)
( 61,105)( 62,104)( 63,103)( 64,102)( 65,101)( 66,100)( 67, 99)( 68, 98)
( 69, 97)( 70, 96)( 71, 95)( 72, 94)( 73, 93)( 74, 92)( 75, 91)( 76, 90)
( 77, 89)( 78, 88)( 79, 87)( 80, 86)( 81, 85)( 82, 84)(125,164)(126,163)
(127,162)(128,161)(129,160)(130,159)(131,158)(132,157)(133,156)(134,155)
(135,154)(136,153)(137,152)(138,151)(139,150)(140,149)(141,148)(142,147)
(143,146)(144,145)(165,206)(166,246)(167,245)(168,244)(169,243)(170,242)
(171,241)(172,240)(173,239)(174,238)(175,237)(176,236)(177,235)(178,234)
(179,233)(180,232)(181,231)(182,230)(183,229)(184,228)(185,227)(186,226)
(187,225)(188,224)(189,223)(190,222)(191,221)(192,220)(193,219)(194,218)
(195,217)(196,216)(197,215)(198,214)(199,213)(200,212)(201,211)(202,210)
(203,209)(204,208)(205,207)(247,370)(248,410)(249,409)(250,408)(251,407)
(252,406)(253,405)(254,404)(255,403)(256,402)(257,401)(258,400)(259,399)
(260,398)(261,397)(262,396)(263,395)(264,394)(265,393)(266,392)(267,391)
(268,390)(269,389)(270,388)(271,387)(272,386)(273,385)(274,384)(275,383)
(276,382)(277,381)(278,380)(279,379)(280,378)(281,377)(282,376)(283,375)
(284,374)(285,373)(286,372)(287,371)(288,452)(289,492)(290,491)(291,490)
(292,489)(293,488)(294,487)(295,486)(296,485)(297,484)(298,483)(299,482)
(300,481)(301,480)(302,479)(303,478)(304,477)(305,476)(306,475)(307,474)
(308,473)(309,472)(310,471)(311,470)(312,469)(313,468)(314,467)(315,466)
(316,465)(317,464)(318,463)(319,462)(320,461)(321,460)(322,459)(323,458)
(324,457)(325,456)(326,455)(327,454)(328,453)(329,411)(330,451)(331,450)
(332,449)(333,448)(334,447)(335,446)(336,445)(337,444)(338,443)(339,442)
(340,441)(341,440)(342,439)(343,438)(344,437)(345,436)(346,435)(347,434)
(348,433)(349,432)(350,431)(351,430)(352,429)(353,428)(354,427)(355,426)
(356,425)(357,424)(358,423)(359,422)(360,421)(361,420)(362,419)(363,418)
(364,417)(365,416)(366,415)(367,414)(368,413)(369,412);
s1 := Sym(492)!(  1,289)(  2,288)(  3,328)(  4,327)(  5,326)(  6,325)(  7,324)
(  8,323)(  9,322)( 10,321)( 11,320)( 12,319)( 13,318)( 14,317)( 15,316)
( 16,315)( 17,314)( 18,313)( 19,312)( 20,311)( 21,310)( 22,309)( 23,308)
( 24,307)( 25,306)( 26,305)( 27,304)( 28,303)( 29,302)( 30,301)( 31,300)
( 32,299)( 33,298)( 34,297)( 35,296)( 36,295)( 37,294)( 38,293)( 39,292)
( 40,291)( 41,290)( 42,248)( 43,247)( 44,287)( 45,286)( 46,285)( 47,284)
( 48,283)( 49,282)( 50,281)( 51,280)( 52,279)( 53,278)( 54,277)( 55,276)
( 56,275)( 57,274)( 58,273)( 59,272)( 60,271)( 61,270)( 62,269)( 63,268)
( 64,267)( 65,266)( 66,265)( 67,264)( 68,263)( 69,262)( 70,261)( 71,260)
( 72,259)( 73,258)( 74,257)( 75,256)( 76,255)( 77,254)( 78,253)( 79,252)
( 80,251)( 81,250)( 82,249)( 83,330)( 84,329)( 85,369)( 86,368)( 87,367)
( 88,366)( 89,365)( 90,364)( 91,363)( 92,362)( 93,361)( 94,360)( 95,359)
( 96,358)( 97,357)( 98,356)( 99,355)(100,354)(101,353)(102,352)(103,351)
(104,350)(105,349)(106,348)(107,347)(108,346)(109,345)(110,344)(111,343)
(112,342)(113,341)(114,340)(115,339)(116,338)(117,337)(118,336)(119,335)
(120,334)(121,333)(122,332)(123,331)(124,412)(125,411)(126,451)(127,450)
(128,449)(129,448)(130,447)(131,446)(132,445)(133,444)(134,443)(135,442)
(136,441)(137,440)(138,439)(139,438)(140,437)(141,436)(142,435)(143,434)
(144,433)(145,432)(146,431)(147,430)(148,429)(149,428)(150,427)(151,426)
(152,425)(153,424)(154,423)(155,422)(156,421)(157,420)(158,419)(159,418)
(160,417)(161,416)(162,415)(163,414)(164,413)(165,371)(166,370)(167,410)
(168,409)(169,408)(170,407)(171,406)(172,405)(173,404)(174,403)(175,402)
(176,401)(177,400)(178,399)(179,398)(180,397)(181,396)(182,395)(183,394)
(184,393)(185,392)(186,391)(187,390)(188,389)(189,388)(190,387)(191,386)
(192,385)(193,384)(194,383)(195,382)(196,381)(197,380)(198,379)(199,378)
(200,377)(201,376)(202,375)(203,374)(204,373)(205,372)(206,453)(207,452)
(208,492)(209,491)(210,490)(211,489)(212,488)(213,487)(214,486)(215,485)
(216,484)(217,483)(218,482)(219,481)(220,480)(221,479)(222,478)(223,477)
(224,476)(225,475)(226,474)(227,473)(228,472)(229,471)(230,470)(231,469)
(232,468)(233,467)(234,466)(235,465)(236,464)(237,463)(238,462)(239,461)
(240,460)(241,459)(242,458)(243,457)(244,456)(245,455)(246,454);
poly := sub<Sym(492)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope