Polytope of Type {2,498}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,498}*1992
if this polytope has a name.
Group : SmallGroup(1992,38)
Rank : 3
Schlafli Type : {2,498}
Number of vertices, edges, etc : 2, 498, 498
Order of s0s1s2 : 498
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,249}*996
   3-fold quotients : {2,166}*664
   6-fold quotients : {2,83}*332
   83-fold quotients : {2,6}*24
   166-fold quotients : {2,3}*12
   249-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 85)(  5, 84)(  6, 83)(  7, 82)(  8, 81)(  9, 80)( 10, 79)( 11, 78)
( 12, 77)( 13, 76)( 14, 75)( 15, 74)( 16, 73)( 17, 72)( 18, 71)( 19, 70)
( 20, 69)( 21, 68)( 22, 67)( 23, 66)( 24, 65)( 25, 64)( 26, 63)( 27, 62)
( 28, 61)( 29, 60)( 30, 59)( 31, 58)( 32, 57)( 33, 56)( 34, 55)( 35, 54)
( 36, 53)( 37, 52)( 38, 51)( 39, 50)( 40, 49)( 41, 48)( 42, 47)( 43, 46)
( 44, 45)( 86,169)( 87,251)( 88,250)( 89,249)( 90,248)( 91,247)( 92,246)
( 93,245)( 94,244)( 95,243)( 96,242)( 97,241)( 98,240)( 99,239)(100,238)
(101,237)(102,236)(103,235)(104,234)(105,233)(106,232)(107,231)(108,230)
(109,229)(110,228)(111,227)(112,226)(113,225)(114,224)(115,223)(116,222)
(117,221)(118,220)(119,219)(120,218)(121,217)(122,216)(123,215)(124,214)
(125,213)(126,212)(127,211)(128,210)(129,209)(130,208)(131,207)(132,206)
(133,205)(134,204)(135,203)(136,202)(137,201)(138,200)(139,199)(140,198)
(141,197)(142,196)(143,195)(144,194)(145,193)(146,192)(147,191)(148,190)
(149,189)(150,188)(151,187)(152,186)(153,185)(154,184)(155,183)(156,182)
(157,181)(158,180)(159,179)(160,178)(161,177)(162,176)(163,175)(164,174)
(165,173)(166,172)(167,171)(168,170)(253,334)(254,333)(255,332)(256,331)
(257,330)(258,329)(259,328)(260,327)(261,326)(262,325)(263,324)(264,323)
(265,322)(266,321)(267,320)(268,319)(269,318)(270,317)(271,316)(272,315)
(273,314)(274,313)(275,312)(276,311)(277,310)(278,309)(279,308)(280,307)
(281,306)(282,305)(283,304)(284,303)(285,302)(286,301)(287,300)(288,299)
(289,298)(290,297)(291,296)(292,295)(293,294)(335,418)(336,500)(337,499)
(338,498)(339,497)(340,496)(341,495)(342,494)(343,493)(344,492)(345,491)
(346,490)(347,489)(348,488)(349,487)(350,486)(351,485)(352,484)(353,483)
(354,482)(355,481)(356,480)(357,479)(358,478)(359,477)(360,476)(361,475)
(362,474)(363,473)(364,472)(365,471)(366,470)(367,469)(368,468)(369,467)
(370,466)(371,465)(372,464)(373,463)(374,462)(375,461)(376,460)(377,459)
(378,458)(379,457)(380,456)(381,455)(382,454)(383,453)(384,452)(385,451)
(386,450)(387,449)(388,448)(389,447)(390,446)(391,445)(392,444)(393,443)
(394,442)(395,441)(396,440)(397,439)(398,438)(399,437)(400,436)(401,435)
(402,434)(403,433)(404,432)(405,431)(406,430)(407,429)(408,428)(409,427)
(410,426)(411,425)(412,424)(413,423)(414,422)(415,421)(416,420)(417,419);;
s2 := (  3,336)(  4,335)(  5,417)(  6,416)(  7,415)(  8,414)(  9,413)( 10,412)
( 11,411)( 12,410)( 13,409)( 14,408)( 15,407)( 16,406)( 17,405)( 18,404)
( 19,403)( 20,402)( 21,401)( 22,400)( 23,399)( 24,398)( 25,397)( 26,396)
( 27,395)( 28,394)( 29,393)( 30,392)( 31,391)( 32,390)( 33,389)( 34,388)
( 35,387)( 36,386)( 37,385)( 38,384)( 39,383)( 40,382)( 41,381)( 42,380)
( 43,379)( 44,378)( 45,377)( 46,376)( 47,375)( 48,374)( 49,373)( 50,372)
( 51,371)( 52,370)( 53,369)( 54,368)( 55,367)( 56,366)( 57,365)( 58,364)
( 59,363)( 60,362)( 61,361)( 62,360)( 63,359)( 64,358)( 65,357)( 66,356)
( 67,355)( 68,354)( 69,353)( 70,352)( 71,351)( 72,350)( 73,349)( 74,348)
( 75,347)( 76,346)( 77,345)( 78,344)( 79,343)( 80,342)( 81,341)( 82,340)
( 83,339)( 84,338)( 85,337)( 86,253)( 87,252)( 88,334)( 89,333)( 90,332)
( 91,331)( 92,330)( 93,329)( 94,328)( 95,327)( 96,326)( 97,325)( 98,324)
( 99,323)(100,322)(101,321)(102,320)(103,319)(104,318)(105,317)(106,316)
(107,315)(108,314)(109,313)(110,312)(111,311)(112,310)(113,309)(114,308)
(115,307)(116,306)(117,305)(118,304)(119,303)(120,302)(121,301)(122,300)
(123,299)(124,298)(125,297)(126,296)(127,295)(128,294)(129,293)(130,292)
(131,291)(132,290)(133,289)(134,288)(135,287)(136,286)(137,285)(138,284)
(139,283)(140,282)(141,281)(142,280)(143,279)(144,278)(145,277)(146,276)
(147,275)(148,274)(149,273)(150,272)(151,271)(152,270)(153,269)(154,268)
(155,267)(156,266)(157,265)(158,264)(159,263)(160,262)(161,261)(162,260)
(163,259)(164,258)(165,257)(166,256)(167,255)(168,254)(169,419)(170,418)
(171,500)(172,499)(173,498)(174,497)(175,496)(176,495)(177,494)(178,493)
(179,492)(180,491)(181,490)(182,489)(183,488)(184,487)(185,486)(186,485)
(187,484)(188,483)(189,482)(190,481)(191,480)(192,479)(193,478)(194,477)
(195,476)(196,475)(197,474)(198,473)(199,472)(200,471)(201,470)(202,469)
(203,468)(204,467)(205,466)(206,465)(207,464)(208,463)(209,462)(210,461)
(211,460)(212,459)(213,458)(214,457)(215,456)(216,455)(217,454)(218,453)
(219,452)(220,451)(221,450)(222,449)(223,448)(224,447)(225,446)(226,445)
(227,444)(228,443)(229,442)(230,441)(231,440)(232,439)(233,438)(234,437)
(235,436)(236,435)(237,434)(238,433)(239,432)(240,431)(241,430)(242,429)
(243,428)(244,427)(245,426)(246,425)(247,424)(248,423)(249,422)(250,421)
(251,420);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(500)!(1,2);
s1 := Sym(500)!(  4, 85)(  5, 84)(  6, 83)(  7, 82)(  8, 81)(  9, 80)( 10, 79)
( 11, 78)( 12, 77)( 13, 76)( 14, 75)( 15, 74)( 16, 73)( 17, 72)( 18, 71)
( 19, 70)( 20, 69)( 21, 68)( 22, 67)( 23, 66)( 24, 65)( 25, 64)( 26, 63)
( 27, 62)( 28, 61)( 29, 60)( 30, 59)( 31, 58)( 32, 57)( 33, 56)( 34, 55)
( 35, 54)( 36, 53)( 37, 52)( 38, 51)( 39, 50)( 40, 49)( 41, 48)( 42, 47)
( 43, 46)( 44, 45)( 86,169)( 87,251)( 88,250)( 89,249)( 90,248)( 91,247)
( 92,246)( 93,245)( 94,244)( 95,243)( 96,242)( 97,241)( 98,240)( 99,239)
(100,238)(101,237)(102,236)(103,235)(104,234)(105,233)(106,232)(107,231)
(108,230)(109,229)(110,228)(111,227)(112,226)(113,225)(114,224)(115,223)
(116,222)(117,221)(118,220)(119,219)(120,218)(121,217)(122,216)(123,215)
(124,214)(125,213)(126,212)(127,211)(128,210)(129,209)(130,208)(131,207)
(132,206)(133,205)(134,204)(135,203)(136,202)(137,201)(138,200)(139,199)
(140,198)(141,197)(142,196)(143,195)(144,194)(145,193)(146,192)(147,191)
(148,190)(149,189)(150,188)(151,187)(152,186)(153,185)(154,184)(155,183)
(156,182)(157,181)(158,180)(159,179)(160,178)(161,177)(162,176)(163,175)
(164,174)(165,173)(166,172)(167,171)(168,170)(253,334)(254,333)(255,332)
(256,331)(257,330)(258,329)(259,328)(260,327)(261,326)(262,325)(263,324)
(264,323)(265,322)(266,321)(267,320)(268,319)(269,318)(270,317)(271,316)
(272,315)(273,314)(274,313)(275,312)(276,311)(277,310)(278,309)(279,308)
(280,307)(281,306)(282,305)(283,304)(284,303)(285,302)(286,301)(287,300)
(288,299)(289,298)(290,297)(291,296)(292,295)(293,294)(335,418)(336,500)
(337,499)(338,498)(339,497)(340,496)(341,495)(342,494)(343,493)(344,492)
(345,491)(346,490)(347,489)(348,488)(349,487)(350,486)(351,485)(352,484)
(353,483)(354,482)(355,481)(356,480)(357,479)(358,478)(359,477)(360,476)
(361,475)(362,474)(363,473)(364,472)(365,471)(366,470)(367,469)(368,468)
(369,467)(370,466)(371,465)(372,464)(373,463)(374,462)(375,461)(376,460)
(377,459)(378,458)(379,457)(380,456)(381,455)(382,454)(383,453)(384,452)
(385,451)(386,450)(387,449)(388,448)(389,447)(390,446)(391,445)(392,444)
(393,443)(394,442)(395,441)(396,440)(397,439)(398,438)(399,437)(400,436)
(401,435)(402,434)(403,433)(404,432)(405,431)(406,430)(407,429)(408,428)
(409,427)(410,426)(411,425)(412,424)(413,423)(414,422)(415,421)(416,420)
(417,419);
s2 := Sym(500)!(  3,336)(  4,335)(  5,417)(  6,416)(  7,415)(  8,414)(  9,413)
( 10,412)( 11,411)( 12,410)( 13,409)( 14,408)( 15,407)( 16,406)( 17,405)
( 18,404)( 19,403)( 20,402)( 21,401)( 22,400)( 23,399)( 24,398)( 25,397)
( 26,396)( 27,395)( 28,394)( 29,393)( 30,392)( 31,391)( 32,390)( 33,389)
( 34,388)( 35,387)( 36,386)( 37,385)( 38,384)( 39,383)( 40,382)( 41,381)
( 42,380)( 43,379)( 44,378)( 45,377)( 46,376)( 47,375)( 48,374)( 49,373)
( 50,372)( 51,371)( 52,370)( 53,369)( 54,368)( 55,367)( 56,366)( 57,365)
( 58,364)( 59,363)( 60,362)( 61,361)( 62,360)( 63,359)( 64,358)( 65,357)
( 66,356)( 67,355)( 68,354)( 69,353)( 70,352)( 71,351)( 72,350)( 73,349)
( 74,348)( 75,347)( 76,346)( 77,345)( 78,344)( 79,343)( 80,342)( 81,341)
( 82,340)( 83,339)( 84,338)( 85,337)( 86,253)( 87,252)( 88,334)( 89,333)
( 90,332)( 91,331)( 92,330)( 93,329)( 94,328)( 95,327)( 96,326)( 97,325)
( 98,324)( 99,323)(100,322)(101,321)(102,320)(103,319)(104,318)(105,317)
(106,316)(107,315)(108,314)(109,313)(110,312)(111,311)(112,310)(113,309)
(114,308)(115,307)(116,306)(117,305)(118,304)(119,303)(120,302)(121,301)
(122,300)(123,299)(124,298)(125,297)(126,296)(127,295)(128,294)(129,293)
(130,292)(131,291)(132,290)(133,289)(134,288)(135,287)(136,286)(137,285)
(138,284)(139,283)(140,282)(141,281)(142,280)(143,279)(144,278)(145,277)
(146,276)(147,275)(148,274)(149,273)(150,272)(151,271)(152,270)(153,269)
(154,268)(155,267)(156,266)(157,265)(158,264)(159,263)(160,262)(161,261)
(162,260)(163,259)(164,258)(165,257)(166,256)(167,255)(168,254)(169,419)
(170,418)(171,500)(172,499)(173,498)(174,497)(175,496)(176,495)(177,494)
(178,493)(179,492)(180,491)(181,490)(182,489)(183,488)(184,487)(185,486)
(186,485)(187,484)(188,483)(189,482)(190,481)(191,480)(192,479)(193,478)
(194,477)(195,476)(196,475)(197,474)(198,473)(199,472)(200,471)(201,470)
(202,469)(203,468)(204,467)(205,466)(206,465)(207,464)(208,463)(209,462)
(210,461)(211,460)(212,459)(213,458)(214,457)(215,456)(216,455)(217,454)
(218,453)(219,452)(220,451)(221,450)(222,449)(223,448)(224,447)(225,446)
(226,445)(227,444)(228,443)(229,442)(230,441)(231,440)(232,439)(233,438)
(234,437)(235,436)(236,435)(237,434)(238,433)(239,432)(240,431)(241,430)
(242,429)(243,428)(244,427)(245,426)(246,425)(247,424)(248,423)(249,422)
(250,421)(251,420);
poly := sub<Sym(500)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope