include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {498}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {498}*996
Also Known As : 498-gon, {498}. if this polytope has another name.
Group : SmallGroup(996,9)
Rank : 2
Schlafli Type : {498}
Number of vertices, edges, etc : 498, 498
Order of s0s1 : 498
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{498,2} of size 1992
Vertex Figure Of :
{2,498} of size 1992
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {249}*498
3-fold quotients : {166}*332
6-fold quotients : {83}*166
83-fold quotients : {6}*12
166-fold quotients : {3}*6
249-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {996}*1992
Permutation Representation (GAP) :
s0 := ( 2, 83)( 3, 82)( 4, 81)( 5, 80)( 6, 79)( 7, 78)( 8, 77)( 9, 76)
( 10, 75)( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 70)( 16, 69)( 17, 68)
( 18, 67)( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 62)( 24, 61)( 25, 60)
( 26, 59)( 27, 58)( 28, 57)( 29, 56)( 30, 55)( 31, 54)( 32, 53)( 33, 52)
( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)( 40, 45)( 41, 44)
( 42, 43)( 84,167)( 85,249)( 86,248)( 87,247)( 88,246)( 89,245)( 90,244)
( 91,243)( 92,242)( 93,241)( 94,240)( 95,239)( 96,238)( 97,237)( 98,236)
( 99,235)(100,234)(101,233)(102,232)(103,231)(104,230)(105,229)(106,228)
(107,227)(108,226)(109,225)(110,224)(111,223)(112,222)(113,221)(114,220)
(115,219)(116,218)(117,217)(118,216)(119,215)(120,214)(121,213)(122,212)
(123,211)(124,210)(125,209)(126,208)(127,207)(128,206)(129,205)(130,204)
(131,203)(132,202)(133,201)(134,200)(135,199)(136,198)(137,197)(138,196)
(139,195)(140,194)(141,193)(142,192)(143,191)(144,190)(145,189)(146,188)
(147,187)(148,186)(149,185)(150,184)(151,183)(152,182)(153,181)(154,180)
(155,179)(156,178)(157,177)(158,176)(159,175)(160,174)(161,173)(162,172)
(163,171)(164,170)(165,169)(166,168)(251,332)(252,331)(253,330)(254,329)
(255,328)(256,327)(257,326)(258,325)(259,324)(260,323)(261,322)(262,321)
(263,320)(264,319)(265,318)(266,317)(267,316)(268,315)(269,314)(270,313)
(271,312)(272,311)(273,310)(274,309)(275,308)(276,307)(277,306)(278,305)
(279,304)(280,303)(281,302)(282,301)(283,300)(284,299)(285,298)(286,297)
(287,296)(288,295)(289,294)(290,293)(291,292)(333,416)(334,498)(335,497)
(336,496)(337,495)(338,494)(339,493)(340,492)(341,491)(342,490)(343,489)
(344,488)(345,487)(346,486)(347,485)(348,484)(349,483)(350,482)(351,481)
(352,480)(353,479)(354,478)(355,477)(356,476)(357,475)(358,474)(359,473)
(360,472)(361,471)(362,470)(363,469)(364,468)(365,467)(366,466)(367,465)
(368,464)(369,463)(370,462)(371,461)(372,460)(373,459)(374,458)(375,457)
(376,456)(377,455)(378,454)(379,453)(380,452)(381,451)(382,450)(383,449)
(384,448)(385,447)(386,446)(387,445)(388,444)(389,443)(390,442)(391,441)
(392,440)(393,439)(394,438)(395,437)(396,436)(397,435)(398,434)(399,433)
(400,432)(401,431)(402,430)(403,429)(404,428)(405,427)(406,426)(407,425)
(408,424)(409,423)(410,422)(411,421)(412,420)(413,419)(414,418)(415,417);;
s1 := ( 1,334)( 2,333)( 3,415)( 4,414)( 5,413)( 6,412)( 7,411)( 8,410)
( 9,409)( 10,408)( 11,407)( 12,406)( 13,405)( 14,404)( 15,403)( 16,402)
( 17,401)( 18,400)( 19,399)( 20,398)( 21,397)( 22,396)( 23,395)( 24,394)
( 25,393)( 26,392)( 27,391)( 28,390)( 29,389)( 30,388)( 31,387)( 32,386)
( 33,385)( 34,384)( 35,383)( 36,382)( 37,381)( 38,380)( 39,379)( 40,378)
( 41,377)( 42,376)( 43,375)( 44,374)( 45,373)( 46,372)( 47,371)( 48,370)
( 49,369)( 50,368)( 51,367)( 52,366)( 53,365)( 54,364)( 55,363)( 56,362)
( 57,361)( 58,360)( 59,359)( 60,358)( 61,357)( 62,356)( 63,355)( 64,354)
( 65,353)( 66,352)( 67,351)( 68,350)( 69,349)( 70,348)( 71,347)( 72,346)
( 73,345)( 74,344)( 75,343)( 76,342)( 77,341)( 78,340)( 79,339)( 80,338)
( 81,337)( 82,336)( 83,335)( 84,251)( 85,250)( 86,332)( 87,331)( 88,330)
( 89,329)( 90,328)( 91,327)( 92,326)( 93,325)( 94,324)( 95,323)( 96,322)
( 97,321)( 98,320)( 99,319)(100,318)(101,317)(102,316)(103,315)(104,314)
(105,313)(106,312)(107,311)(108,310)(109,309)(110,308)(111,307)(112,306)
(113,305)(114,304)(115,303)(116,302)(117,301)(118,300)(119,299)(120,298)
(121,297)(122,296)(123,295)(124,294)(125,293)(126,292)(127,291)(128,290)
(129,289)(130,288)(131,287)(132,286)(133,285)(134,284)(135,283)(136,282)
(137,281)(138,280)(139,279)(140,278)(141,277)(142,276)(143,275)(144,274)
(145,273)(146,272)(147,271)(148,270)(149,269)(150,268)(151,267)(152,266)
(153,265)(154,264)(155,263)(156,262)(157,261)(158,260)(159,259)(160,258)
(161,257)(162,256)(163,255)(164,254)(165,253)(166,252)(167,417)(168,416)
(169,498)(170,497)(171,496)(172,495)(173,494)(174,493)(175,492)(176,491)
(177,490)(178,489)(179,488)(180,487)(181,486)(182,485)(183,484)(184,483)
(185,482)(186,481)(187,480)(188,479)(189,478)(190,477)(191,476)(192,475)
(193,474)(194,473)(195,472)(196,471)(197,470)(198,469)(199,468)(200,467)
(201,466)(202,465)(203,464)(204,463)(205,462)(206,461)(207,460)(208,459)
(209,458)(210,457)(211,456)(212,455)(213,454)(214,453)(215,452)(216,451)
(217,450)(218,449)(219,448)(220,447)(221,446)(222,445)(223,444)(224,443)
(225,442)(226,441)(227,440)(228,439)(229,438)(230,437)(231,436)(232,435)
(233,434)(234,433)(235,432)(236,431)(237,430)(238,429)(239,428)(240,427)
(241,426)(242,425)(243,424)(244,423)(245,422)(246,421)(247,420)(248,419)
(249,418);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(498)!( 2, 83)( 3, 82)( 4, 81)( 5, 80)( 6, 79)( 7, 78)( 8, 77)
( 9, 76)( 10, 75)( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 70)( 16, 69)
( 17, 68)( 18, 67)( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 62)( 24, 61)
( 25, 60)( 26, 59)( 27, 58)( 28, 57)( 29, 56)( 30, 55)( 31, 54)( 32, 53)
( 33, 52)( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)( 40, 45)
( 41, 44)( 42, 43)( 84,167)( 85,249)( 86,248)( 87,247)( 88,246)( 89,245)
( 90,244)( 91,243)( 92,242)( 93,241)( 94,240)( 95,239)( 96,238)( 97,237)
( 98,236)( 99,235)(100,234)(101,233)(102,232)(103,231)(104,230)(105,229)
(106,228)(107,227)(108,226)(109,225)(110,224)(111,223)(112,222)(113,221)
(114,220)(115,219)(116,218)(117,217)(118,216)(119,215)(120,214)(121,213)
(122,212)(123,211)(124,210)(125,209)(126,208)(127,207)(128,206)(129,205)
(130,204)(131,203)(132,202)(133,201)(134,200)(135,199)(136,198)(137,197)
(138,196)(139,195)(140,194)(141,193)(142,192)(143,191)(144,190)(145,189)
(146,188)(147,187)(148,186)(149,185)(150,184)(151,183)(152,182)(153,181)
(154,180)(155,179)(156,178)(157,177)(158,176)(159,175)(160,174)(161,173)
(162,172)(163,171)(164,170)(165,169)(166,168)(251,332)(252,331)(253,330)
(254,329)(255,328)(256,327)(257,326)(258,325)(259,324)(260,323)(261,322)
(262,321)(263,320)(264,319)(265,318)(266,317)(267,316)(268,315)(269,314)
(270,313)(271,312)(272,311)(273,310)(274,309)(275,308)(276,307)(277,306)
(278,305)(279,304)(280,303)(281,302)(282,301)(283,300)(284,299)(285,298)
(286,297)(287,296)(288,295)(289,294)(290,293)(291,292)(333,416)(334,498)
(335,497)(336,496)(337,495)(338,494)(339,493)(340,492)(341,491)(342,490)
(343,489)(344,488)(345,487)(346,486)(347,485)(348,484)(349,483)(350,482)
(351,481)(352,480)(353,479)(354,478)(355,477)(356,476)(357,475)(358,474)
(359,473)(360,472)(361,471)(362,470)(363,469)(364,468)(365,467)(366,466)
(367,465)(368,464)(369,463)(370,462)(371,461)(372,460)(373,459)(374,458)
(375,457)(376,456)(377,455)(378,454)(379,453)(380,452)(381,451)(382,450)
(383,449)(384,448)(385,447)(386,446)(387,445)(388,444)(389,443)(390,442)
(391,441)(392,440)(393,439)(394,438)(395,437)(396,436)(397,435)(398,434)
(399,433)(400,432)(401,431)(402,430)(403,429)(404,428)(405,427)(406,426)
(407,425)(408,424)(409,423)(410,422)(411,421)(412,420)(413,419)(414,418)
(415,417);
s1 := Sym(498)!( 1,334)( 2,333)( 3,415)( 4,414)( 5,413)( 6,412)( 7,411)
( 8,410)( 9,409)( 10,408)( 11,407)( 12,406)( 13,405)( 14,404)( 15,403)
( 16,402)( 17,401)( 18,400)( 19,399)( 20,398)( 21,397)( 22,396)( 23,395)
( 24,394)( 25,393)( 26,392)( 27,391)( 28,390)( 29,389)( 30,388)( 31,387)
( 32,386)( 33,385)( 34,384)( 35,383)( 36,382)( 37,381)( 38,380)( 39,379)
( 40,378)( 41,377)( 42,376)( 43,375)( 44,374)( 45,373)( 46,372)( 47,371)
( 48,370)( 49,369)( 50,368)( 51,367)( 52,366)( 53,365)( 54,364)( 55,363)
( 56,362)( 57,361)( 58,360)( 59,359)( 60,358)( 61,357)( 62,356)( 63,355)
( 64,354)( 65,353)( 66,352)( 67,351)( 68,350)( 69,349)( 70,348)( 71,347)
( 72,346)( 73,345)( 74,344)( 75,343)( 76,342)( 77,341)( 78,340)( 79,339)
( 80,338)( 81,337)( 82,336)( 83,335)( 84,251)( 85,250)( 86,332)( 87,331)
( 88,330)( 89,329)( 90,328)( 91,327)( 92,326)( 93,325)( 94,324)( 95,323)
( 96,322)( 97,321)( 98,320)( 99,319)(100,318)(101,317)(102,316)(103,315)
(104,314)(105,313)(106,312)(107,311)(108,310)(109,309)(110,308)(111,307)
(112,306)(113,305)(114,304)(115,303)(116,302)(117,301)(118,300)(119,299)
(120,298)(121,297)(122,296)(123,295)(124,294)(125,293)(126,292)(127,291)
(128,290)(129,289)(130,288)(131,287)(132,286)(133,285)(134,284)(135,283)
(136,282)(137,281)(138,280)(139,279)(140,278)(141,277)(142,276)(143,275)
(144,274)(145,273)(146,272)(147,271)(148,270)(149,269)(150,268)(151,267)
(152,266)(153,265)(154,264)(155,263)(156,262)(157,261)(158,260)(159,259)
(160,258)(161,257)(162,256)(163,255)(164,254)(165,253)(166,252)(167,417)
(168,416)(169,498)(170,497)(171,496)(172,495)(173,494)(174,493)(175,492)
(176,491)(177,490)(178,489)(179,488)(180,487)(181,486)(182,485)(183,484)
(184,483)(185,482)(186,481)(187,480)(188,479)(189,478)(190,477)(191,476)
(192,475)(193,474)(194,473)(195,472)(196,471)(197,470)(198,469)(199,468)
(200,467)(201,466)(202,465)(203,464)(204,463)(205,462)(206,461)(207,460)
(208,459)(209,458)(210,457)(211,456)(212,455)(213,454)(214,453)(215,452)
(216,451)(217,450)(218,449)(219,448)(220,447)(221,446)(222,445)(223,444)
(224,443)(225,442)(226,441)(227,440)(228,439)(229,438)(230,437)(231,436)
(232,435)(233,434)(234,433)(235,432)(236,431)(237,430)(238,429)(239,428)
(240,427)(241,426)(242,425)(243,424)(244,423)(245,422)(246,421)(247,420)
(248,419)(249,418);
poly := sub<Sym(498)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope