Polytope of Type {4,250}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,250}*2000
Also Known As : {4,250|2}. if this polytope has another name.
Group : SmallGroup(2000,39)
Rank : 3
Schlafli Type : {4,250}
Number of vertices, edges, etc : 4, 500, 250
Order of s0s1s2 : 500
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,250}*1000
   4-fold quotients : {2,125}*500
   5-fold quotients : {4,50}*400
   10-fold quotients : {2,50}*200
   20-fold quotients : {2,25}*100
   25-fold quotients : {4,10}*80
   50-fold quotients : {2,10}*40
   100-fold quotients : {2,5}*20
   125-fold quotients : {4,2}*16
   250-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (251,376)(252,377)(253,378)(254,379)(255,380)(256,381)(257,382)(258,383)
(259,384)(260,385)(261,386)(262,387)(263,388)(264,389)(265,390)(266,391)
(267,392)(268,393)(269,394)(270,395)(271,396)(272,397)(273,398)(274,399)
(275,400)(276,401)(277,402)(278,403)(279,404)(280,405)(281,406)(282,407)
(283,408)(284,409)(285,410)(286,411)(287,412)(288,413)(289,414)(290,415)
(291,416)(292,417)(293,418)(294,419)(295,420)(296,421)(297,422)(298,423)
(299,424)(300,425)(301,426)(302,427)(303,428)(304,429)(305,430)(306,431)
(307,432)(308,433)(309,434)(310,435)(311,436)(312,437)(313,438)(314,439)
(315,440)(316,441)(317,442)(318,443)(319,444)(320,445)(321,446)(322,447)
(323,448)(324,449)(325,450)(326,451)(327,452)(328,453)(329,454)(330,455)
(331,456)(332,457)(333,458)(334,459)(335,460)(336,461)(337,462)(338,463)
(339,464)(340,465)(341,466)(342,467)(343,468)(344,469)(345,470)(346,471)
(347,472)(348,473)(349,474)(350,475)(351,476)(352,477)(353,478)(354,479)
(355,480)(356,481)(357,482)(358,483)(359,484)(360,485)(361,486)(362,487)
(363,488)(364,489)(365,490)(366,491)(367,492)(368,493)(369,494)(370,495)
(371,496)(372,497)(373,498)(374,499)(375,500);;
s1 := (  1,251)(  2,255)(  3,254)(  4,253)(  5,252)(  6,275)(  7,274)(  8,273)
(  9,272)( 10,271)( 11,270)( 12,269)( 13,268)( 14,267)( 15,266)( 16,265)
( 17,264)( 18,263)( 19,262)( 20,261)( 21,260)( 22,259)( 23,258)( 24,257)
( 25,256)( 26,375)( 27,374)( 28,373)( 29,372)( 30,371)( 31,370)( 32,369)
( 33,368)( 34,367)( 35,366)( 36,365)( 37,364)( 38,363)( 39,362)( 40,361)
( 41,360)( 42,359)( 43,358)( 44,357)( 45,356)( 46,355)( 47,354)( 48,353)
( 49,352)( 50,351)( 51,350)( 52,349)( 53,348)( 54,347)( 55,346)( 56,345)
( 57,344)( 58,343)( 59,342)( 60,341)( 61,340)( 62,339)( 63,338)( 64,337)
( 65,336)( 66,335)( 67,334)( 68,333)( 69,332)( 70,331)( 71,330)( 72,329)
( 73,328)( 74,327)( 75,326)( 76,325)( 77,324)( 78,323)( 79,322)( 80,321)
( 81,320)( 82,319)( 83,318)( 84,317)( 85,316)( 86,315)( 87,314)( 88,313)
( 89,312)( 90,311)( 91,310)( 92,309)( 93,308)( 94,307)( 95,306)( 96,305)
( 97,304)( 98,303)( 99,302)(100,301)(101,300)(102,299)(103,298)(104,297)
(105,296)(106,295)(107,294)(108,293)(109,292)(110,291)(111,290)(112,289)
(113,288)(114,287)(115,286)(116,285)(117,284)(118,283)(119,282)(120,281)
(121,280)(122,279)(123,278)(124,277)(125,276)(126,376)(127,380)(128,379)
(129,378)(130,377)(131,400)(132,399)(133,398)(134,397)(135,396)(136,395)
(137,394)(138,393)(139,392)(140,391)(141,390)(142,389)(143,388)(144,387)
(145,386)(146,385)(147,384)(148,383)(149,382)(150,381)(151,500)(152,499)
(153,498)(154,497)(155,496)(156,495)(157,494)(158,493)(159,492)(160,491)
(161,490)(162,489)(163,488)(164,487)(165,486)(166,485)(167,484)(168,483)
(169,482)(170,481)(171,480)(172,479)(173,478)(174,477)(175,476)(176,475)
(177,474)(178,473)(179,472)(180,471)(181,470)(182,469)(183,468)(184,467)
(185,466)(186,465)(187,464)(188,463)(189,462)(190,461)(191,460)(192,459)
(193,458)(194,457)(195,456)(196,455)(197,454)(198,453)(199,452)(200,451)
(201,450)(202,449)(203,448)(204,447)(205,446)(206,445)(207,444)(208,443)
(209,442)(210,441)(211,440)(212,439)(213,438)(214,437)(215,436)(216,435)
(217,434)(218,433)(219,432)(220,431)(221,430)(222,429)(223,428)(224,427)
(225,426)(226,425)(227,424)(228,423)(229,422)(230,421)(231,420)(232,419)
(233,418)(234,417)(235,416)(236,415)(237,414)(238,413)(239,412)(240,411)
(241,410)(242,409)(243,408)(244,407)(245,406)(246,405)(247,404)(248,403)
(249,402)(250,401);;
s2 := (  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 50)(  7, 49)(  8, 48)
(  9, 47)( 10, 46)( 11, 45)( 12, 44)( 13, 43)( 14, 42)( 15, 41)( 16, 40)
( 17, 39)( 18, 38)( 19, 37)( 20, 36)( 21, 35)( 22, 34)( 23, 33)( 24, 32)
( 25, 31)( 51,125)( 52,124)( 53,123)( 54,122)( 55,121)( 56,120)( 57,119)
( 58,118)( 59,117)( 60,116)( 61,115)( 62,114)( 63,113)( 64,112)( 65,111)
( 66,110)( 67,109)( 68,108)( 69,107)( 70,106)( 71,105)( 72,104)( 73,103)
( 74,102)( 75,101)( 76,100)( 77, 99)( 78, 98)( 79, 97)( 80, 96)( 81, 95)
( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)( 87, 89)(126,151)(127,155)
(128,154)(129,153)(130,152)(131,175)(132,174)(133,173)(134,172)(135,171)
(136,170)(137,169)(138,168)(139,167)(140,166)(141,165)(142,164)(143,163)
(144,162)(145,161)(146,160)(147,159)(148,158)(149,157)(150,156)(176,250)
(177,249)(178,248)(179,247)(180,246)(181,245)(182,244)(183,243)(184,242)
(185,241)(186,240)(187,239)(188,238)(189,237)(190,236)(191,235)(192,234)
(193,233)(194,232)(195,231)(196,230)(197,229)(198,228)(199,227)(200,226)
(201,225)(202,224)(203,223)(204,222)(205,221)(206,220)(207,219)(208,218)
(209,217)(210,216)(211,215)(212,214)(251,276)(252,280)(253,279)(254,278)
(255,277)(256,300)(257,299)(258,298)(259,297)(260,296)(261,295)(262,294)
(263,293)(264,292)(265,291)(266,290)(267,289)(268,288)(269,287)(270,286)
(271,285)(272,284)(273,283)(274,282)(275,281)(301,375)(302,374)(303,373)
(304,372)(305,371)(306,370)(307,369)(308,368)(309,367)(310,366)(311,365)
(312,364)(313,363)(314,362)(315,361)(316,360)(317,359)(318,358)(319,357)
(320,356)(321,355)(322,354)(323,353)(324,352)(325,351)(326,350)(327,349)
(328,348)(329,347)(330,346)(331,345)(332,344)(333,343)(334,342)(335,341)
(336,340)(337,339)(376,401)(377,405)(378,404)(379,403)(380,402)(381,425)
(382,424)(383,423)(384,422)(385,421)(386,420)(387,419)(388,418)(389,417)
(390,416)(391,415)(392,414)(393,413)(394,412)(395,411)(396,410)(397,409)
(398,408)(399,407)(400,406)(426,500)(427,499)(428,498)(429,497)(430,496)
(431,495)(432,494)(433,493)(434,492)(435,491)(436,490)(437,489)(438,488)
(439,487)(440,486)(441,485)(442,484)(443,483)(444,482)(445,481)(446,480)
(447,479)(448,478)(449,477)(450,476)(451,475)(452,474)(453,473)(454,472)
(455,471)(456,470)(457,469)(458,468)(459,467)(460,466)(461,465)(462,464);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(500)!(251,376)(252,377)(253,378)(254,379)(255,380)(256,381)(257,382)
(258,383)(259,384)(260,385)(261,386)(262,387)(263,388)(264,389)(265,390)
(266,391)(267,392)(268,393)(269,394)(270,395)(271,396)(272,397)(273,398)
(274,399)(275,400)(276,401)(277,402)(278,403)(279,404)(280,405)(281,406)
(282,407)(283,408)(284,409)(285,410)(286,411)(287,412)(288,413)(289,414)
(290,415)(291,416)(292,417)(293,418)(294,419)(295,420)(296,421)(297,422)
(298,423)(299,424)(300,425)(301,426)(302,427)(303,428)(304,429)(305,430)
(306,431)(307,432)(308,433)(309,434)(310,435)(311,436)(312,437)(313,438)
(314,439)(315,440)(316,441)(317,442)(318,443)(319,444)(320,445)(321,446)
(322,447)(323,448)(324,449)(325,450)(326,451)(327,452)(328,453)(329,454)
(330,455)(331,456)(332,457)(333,458)(334,459)(335,460)(336,461)(337,462)
(338,463)(339,464)(340,465)(341,466)(342,467)(343,468)(344,469)(345,470)
(346,471)(347,472)(348,473)(349,474)(350,475)(351,476)(352,477)(353,478)
(354,479)(355,480)(356,481)(357,482)(358,483)(359,484)(360,485)(361,486)
(362,487)(363,488)(364,489)(365,490)(366,491)(367,492)(368,493)(369,494)
(370,495)(371,496)(372,497)(373,498)(374,499)(375,500);
s1 := Sym(500)!(  1,251)(  2,255)(  3,254)(  4,253)(  5,252)(  6,275)(  7,274)
(  8,273)(  9,272)( 10,271)( 11,270)( 12,269)( 13,268)( 14,267)( 15,266)
( 16,265)( 17,264)( 18,263)( 19,262)( 20,261)( 21,260)( 22,259)( 23,258)
( 24,257)( 25,256)( 26,375)( 27,374)( 28,373)( 29,372)( 30,371)( 31,370)
( 32,369)( 33,368)( 34,367)( 35,366)( 36,365)( 37,364)( 38,363)( 39,362)
( 40,361)( 41,360)( 42,359)( 43,358)( 44,357)( 45,356)( 46,355)( 47,354)
( 48,353)( 49,352)( 50,351)( 51,350)( 52,349)( 53,348)( 54,347)( 55,346)
( 56,345)( 57,344)( 58,343)( 59,342)( 60,341)( 61,340)( 62,339)( 63,338)
( 64,337)( 65,336)( 66,335)( 67,334)( 68,333)( 69,332)( 70,331)( 71,330)
( 72,329)( 73,328)( 74,327)( 75,326)( 76,325)( 77,324)( 78,323)( 79,322)
( 80,321)( 81,320)( 82,319)( 83,318)( 84,317)( 85,316)( 86,315)( 87,314)
( 88,313)( 89,312)( 90,311)( 91,310)( 92,309)( 93,308)( 94,307)( 95,306)
( 96,305)( 97,304)( 98,303)( 99,302)(100,301)(101,300)(102,299)(103,298)
(104,297)(105,296)(106,295)(107,294)(108,293)(109,292)(110,291)(111,290)
(112,289)(113,288)(114,287)(115,286)(116,285)(117,284)(118,283)(119,282)
(120,281)(121,280)(122,279)(123,278)(124,277)(125,276)(126,376)(127,380)
(128,379)(129,378)(130,377)(131,400)(132,399)(133,398)(134,397)(135,396)
(136,395)(137,394)(138,393)(139,392)(140,391)(141,390)(142,389)(143,388)
(144,387)(145,386)(146,385)(147,384)(148,383)(149,382)(150,381)(151,500)
(152,499)(153,498)(154,497)(155,496)(156,495)(157,494)(158,493)(159,492)
(160,491)(161,490)(162,489)(163,488)(164,487)(165,486)(166,485)(167,484)
(168,483)(169,482)(170,481)(171,480)(172,479)(173,478)(174,477)(175,476)
(176,475)(177,474)(178,473)(179,472)(180,471)(181,470)(182,469)(183,468)
(184,467)(185,466)(186,465)(187,464)(188,463)(189,462)(190,461)(191,460)
(192,459)(193,458)(194,457)(195,456)(196,455)(197,454)(198,453)(199,452)
(200,451)(201,450)(202,449)(203,448)(204,447)(205,446)(206,445)(207,444)
(208,443)(209,442)(210,441)(211,440)(212,439)(213,438)(214,437)(215,436)
(216,435)(217,434)(218,433)(219,432)(220,431)(221,430)(222,429)(223,428)
(224,427)(225,426)(226,425)(227,424)(228,423)(229,422)(230,421)(231,420)
(232,419)(233,418)(234,417)(235,416)(236,415)(237,414)(238,413)(239,412)
(240,411)(241,410)(242,409)(243,408)(244,407)(245,406)(246,405)(247,404)
(248,403)(249,402)(250,401);
s2 := Sym(500)!(  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 50)(  7, 49)
(  8, 48)(  9, 47)( 10, 46)( 11, 45)( 12, 44)( 13, 43)( 14, 42)( 15, 41)
( 16, 40)( 17, 39)( 18, 38)( 19, 37)( 20, 36)( 21, 35)( 22, 34)( 23, 33)
( 24, 32)( 25, 31)( 51,125)( 52,124)( 53,123)( 54,122)( 55,121)( 56,120)
( 57,119)( 58,118)( 59,117)( 60,116)( 61,115)( 62,114)( 63,113)( 64,112)
( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)( 70,106)( 71,105)( 72,104)
( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)( 78, 98)( 79, 97)( 80, 96)
( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)( 87, 89)(126,151)
(127,155)(128,154)(129,153)(130,152)(131,175)(132,174)(133,173)(134,172)
(135,171)(136,170)(137,169)(138,168)(139,167)(140,166)(141,165)(142,164)
(143,163)(144,162)(145,161)(146,160)(147,159)(148,158)(149,157)(150,156)
(176,250)(177,249)(178,248)(179,247)(180,246)(181,245)(182,244)(183,243)
(184,242)(185,241)(186,240)(187,239)(188,238)(189,237)(190,236)(191,235)
(192,234)(193,233)(194,232)(195,231)(196,230)(197,229)(198,228)(199,227)
(200,226)(201,225)(202,224)(203,223)(204,222)(205,221)(206,220)(207,219)
(208,218)(209,217)(210,216)(211,215)(212,214)(251,276)(252,280)(253,279)
(254,278)(255,277)(256,300)(257,299)(258,298)(259,297)(260,296)(261,295)
(262,294)(263,293)(264,292)(265,291)(266,290)(267,289)(268,288)(269,287)
(270,286)(271,285)(272,284)(273,283)(274,282)(275,281)(301,375)(302,374)
(303,373)(304,372)(305,371)(306,370)(307,369)(308,368)(309,367)(310,366)
(311,365)(312,364)(313,363)(314,362)(315,361)(316,360)(317,359)(318,358)
(319,357)(320,356)(321,355)(322,354)(323,353)(324,352)(325,351)(326,350)
(327,349)(328,348)(329,347)(330,346)(331,345)(332,344)(333,343)(334,342)
(335,341)(336,340)(337,339)(376,401)(377,405)(378,404)(379,403)(380,402)
(381,425)(382,424)(383,423)(384,422)(385,421)(386,420)(387,419)(388,418)
(389,417)(390,416)(391,415)(392,414)(393,413)(394,412)(395,411)(396,410)
(397,409)(398,408)(399,407)(400,406)(426,500)(427,499)(428,498)(429,497)
(430,496)(431,495)(432,494)(433,493)(434,492)(435,491)(436,490)(437,489)
(438,488)(439,487)(440,486)(441,485)(442,484)(443,483)(444,482)(445,481)
(446,480)(447,479)(448,478)(449,477)(450,476)(451,475)(452,474)(453,473)
(454,472)(455,471)(456,470)(457,469)(458,468)(459,467)(460,466)(461,465)
(462,464);
poly := sub<Sym(500)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope