include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,20}*2000d
if this polytope has a name.
Group : SmallGroup(2000,482)
Rank : 3
Schlafli Type : {10,20}
Number of vertices, edges, etc : 50, 500, 100
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,20}*1000d
5-fold quotients : {10,4}*400
10-fold quotients : {10,4}*200
125-fold quotients : {2,4}*16
250-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,126)( 2,127)( 3,128)( 4,129)( 5,130)( 6,146)( 7,147)( 8,148)
( 9,149)( 10,150)( 11,141)( 12,142)( 13,143)( 14,144)( 15,145)( 16,136)
( 17,137)( 18,138)( 19,139)( 20,140)( 21,131)( 22,132)( 23,133)( 24,134)
( 25,135)( 26,229)( 27,230)( 28,226)( 29,227)( 30,228)( 31,249)( 32,250)
( 33,246)( 34,247)( 35,248)( 36,244)( 37,245)( 38,241)( 39,242)( 40,243)
( 41,239)( 42,240)( 43,236)( 44,237)( 45,238)( 46,234)( 47,235)( 48,231)
( 49,232)( 50,233)( 51,202)( 52,203)( 53,204)( 54,205)( 55,201)( 56,222)
( 57,223)( 58,224)( 59,225)( 60,221)( 61,217)( 62,218)( 63,219)( 64,220)
( 65,216)( 66,212)( 67,213)( 68,214)( 69,215)( 70,211)( 71,207)( 72,208)
( 73,209)( 74,210)( 75,206)( 76,180)( 77,176)( 78,177)( 79,178)( 80,179)
( 81,200)( 82,196)( 83,197)( 84,198)( 85,199)( 86,195)( 87,191)( 88,192)
( 89,193)( 90,194)( 91,190)( 92,186)( 93,187)( 94,188)( 95,189)( 96,185)
( 97,181)( 98,182)( 99,183)(100,184)(101,153)(102,154)(103,155)(104,151)
(105,152)(106,173)(107,174)(108,175)(109,171)(110,172)(111,168)(112,169)
(113,170)(114,166)(115,167)(116,163)(117,164)(118,165)(119,161)(120,162)
(121,158)(122,159)(123,160)(124,156)(125,157);;
s1 := ( 1, 26)( 2, 30)( 3, 29)( 4, 28)( 5, 27)( 6, 85)( 7, 84)( 8, 83)
( 9, 82)( 10, 81)( 12, 15)( 13, 14)( 16, 69)( 17, 68)( 18, 67)( 19, 66)
( 20, 70)( 21,124)( 22,123)( 23,122)( 24,121)( 25,125)( 31, 60)( 32, 59)
( 33, 58)( 34, 57)( 35, 56)( 36,111)( 37,115)( 38,114)( 39,113)( 40,112)
( 41, 44)( 42, 43)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50,100)( 51,101)
( 52,105)( 53,104)( 54,103)( 55,102)( 61, 86)( 62, 90)( 63, 89)( 64, 88)
( 65, 87)( 71, 74)( 72, 73)( 77, 80)( 78, 79)( 91,119)( 92,118)( 93,117)
( 94,116)( 95,120)(106,110)(107,109)(126,151)(127,155)(128,154)(129,153)
(130,152)(131,210)(132,209)(133,208)(134,207)(135,206)(137,140)(138,139)
(141,194)(142,193)(143,192)(144,191)(145,195)(146,249)(147,248)(148,247)
(149,246)(150,250)(156,185)(157,184)(158,183)(159,182)(160,181)(161,236)
(162,240)(163,239)(164,238)(165,237)(166,169)(167,168)(171,224)(172,223)
(173,222)(174,221)(175,225)(176,226)(177,230)(178,229)(179,228)(180,227)
(186,211)(187,215)(188,214)(189,213)(190,212)(196,199)(197,198)(202,205)
(203,204)(216,244)(217,243)(218,242)(219,241)(220,245)(231,235)(232,234);;
s2 := ( 2, 5)( 3, 4)( 6, 41)( 7, 45)( 8, 44)( 9, 43)( 10, 42)( 11, 59)
( 12, 58)( 13, 57)( 14, 56)( 15, 60)( 16,100)( 17, 99)( 18, 98)( 19, 97)
( 20, 96)( 21,114)( 22,113)( 23,112)( 24,111)( 25,115)( 26, 61)( 27, 65)
( 28, 64)( 29, 63)( 30, 62)( 31, 78)( 32, 77)( 33, 76)( 34, 80)( 35, 79)
( 36,118)( 37,117)( 38,116)( 39,120)( 40,119)( 46, 47)( 48, 50)( 51,125)
( 52,124)( 53,123)( 54,122)( 55,121)( 67, 70)( 68, 69)( 71, 84)( 72, 83)
( 73, 82)( 74, 81)( 75, 85)( 86, 88)( 89, 90)( 91,105)( 92,104)( 93,103)
( 94,102)( 95,101)(106,108)(109,110)(127,130)(128,129)(131,166)(132,170)
(133,169)(134,168)(135,167)(136,184)(137,183)(138,182)(139,181)(140,185)
(141,225)(142,224)(143,223)(144,222)(145,221)(146,239)(147,238)(148,237)
(149,236)(150,240)(151,186)(152,190)(153,189)(154,188)(155,187)(156,203)
(157,202)(158,201)(159,205)(160,204)(161,243)(162,242)(163,241)(164,245)
(165,244)(171,172)(173,175)(176,250)(177,249)(178,248)(179,247)(180,246)
(192,195)(193,194)(196,209)(197,208)(198,207)(199,206)(200,210)(211,213)
(214,215)(216,230)(217,229)(218,228)(219,227)(220,226)(231,233)(234,235);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(250)!( 1,126)( 2,127)( 3,128)( 4,129)( 5,130)( 6,146)( 7,147)
( 8,148)( 9,149)( 10,150)( 11,141)( 12,142)( 13,143)( 14,144)( 15,145)
( 16,136)( 17,137)( 18,138)( 19,139)( 20,140)( 21,131)( 22,132)( 23,133)
( 24,134)( 25,135)( 26,229)( 27,230)( 28,226)( 29,227)( 30,228)( 31,249)
( 32,250)( 33,246)( 34,247)( 35,248)( 36,244)( 37,245)( 38,241)( 39,242)
( 40,243)( 41,239)( 42,240)( 43,236)( 44,237)( 45,238)( 46,234)( 47,235)
( 48,231)( 49,232)( 50,233)( 51,202)( 52,203)( 53,204)( 54,205)( 55,201)
( 56,222)( 57,223)( 58,224)( 59,225)( 60,221)( 61,217)( 62,218)( 63,219)
( 64,220)( 65,216)( 66,212)( 67,213)( 68,214)( 69,215)( 70,211)( 71,207)
( 72,208)( 73,209)( 74,210)( 75,206)( 76,180)( 77,176)( 78,177)( 79,178)
( 80,179)( 81,200)( 82,196)( 83,197)( 84,198)( 85,199)( 86,195)( 87,191)
( 88,192)( 89,193)( 90,194)( 91,190)( 92,186)( 93,187)( 94,188)( 95,189)
( 96,185)( 97,181)( 98,182)( 99,183)(100,184)(101,153)(102,154)(103,155)
(104,151)(105,152)(106,173)(107,174)(108,175)(109,171)(110,172)(111,168)
(112,169)(113,170)(114,166)(115,167)(116,163)(117,164)(118,165)(119,161)
(120,162)(121,158)(122,159)(123,160)(124,156)(125,157);
s1 := Sym(250)!( 1, 26)( 2, 30)( 3, 29)( 4, 28)( 5, 27)( 6, 85)( 7, 84)
( 8, 83)( 9, 82)( 10, 81)( 12, 15)( 13, 14)( 16, 69)( 17, 68)( 18, 67)
( 19, 66)( 20, 70)( 21,124)( 22,123)( 23,122)( 24,121)( 25,125)( 31, 60)
( 32, 59)( 33, 58)( 34, 57)( 35, 56)( 36,111)( 37,115)( 38,114)( 39,113)
( 40,112)( 41, 44)( 42, 43)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50,100)
( 51,101)( 52,105)( 53,104)( 54,103)( 55,102)( 61, 86)( 62, 90)( 63, 89)
( 64, 88)( 65, 87)( 71, 74)( 72, 73)( 77, 80)( 78, 79)( 91,119)( 92,118)
( 93,117)( 94,116)( 95,120)(106,110)(107,109)(126,151)(127,155)(128,154)
(129,153)(130,152)(131,210)(132,209)(133,208)(134,207)(135,206)(137,140)
(138,139)(141,194)(142,193)(143,192)(144,191)(145,195)(146,249)(147,248)
(148,247)(149,246)(150,250)(156,185)(157,184)(158,183)(159,182)(160,181)
(161,236)(162,240)(163,239)(164,238)(165,237)(166,169)(167,168)(171,224)
(172,223)(173,222)(174,221)(175,225)(176,226)(177,230)(178,229)(179,228)
(180,227)(186,211)(187,215)(188,214)(189,213)(190,212)(196,199)(197,198)
(202,205)(203,204)(216,244)(217,243)(218,242)(219,241)(220,245)(231,235)
(232,234);
s2 := Sym(250)!( 2, 5)( 3, 4)( 6, 41)( 7, 45)( 8, 44)( 9, 43)( 10, 42)
( 11, 59)( 12, 58)( 13, 57)( 14, 56)( 15, 60)( 16,100)( 17, 99)( 18, 98)
( 19, 97)( 20, 96)( 21,114)( 22,113)( 23,112)( 24,111)( 25,115)( 26, 61)
( 27, 65)( 28, 64)( 29, 63)( 30, 62)( 31, 78)( 32, 77)( 33, 76)( 34, 80)
( 35, 79)( 36,118)( 37,117)( 38,116)( 39,120)( 40,119)( 46, 47)( 48, 50)
( 51,125)( 52,124)( 53,123)( 54,122)( 55,121)( 67, 70)( 68, 69)( 71, 84)
( 72, 83)( 73, 82)( 74, 81)( 75, 85)( 86, 88)( 89, 90)( 91,105)( 92,104)
( 93,103)( 94,102)( 95,101)(106,108)(109,110)(127,130)(128,129)(131,166)
(132,170)(133,169)(134,168)(135,167)(136,184)(137,183)(138,182)(139,181)
(140,185)(141,225)(142,224)(143,223)(144,222)(145,221)(146,239)(147,238)
(148,237)(149,236)(150,240)(151,186)(152,190)(153,189)(154,188)(155,187)
(156,203)(157,202)(158,201)(159,205)(160,204)(161,243)(162,242)(163,241)
(164,245)(165,244)(171,172)(173,175)(176,250)(177,249)(178,248)(179,247)
(180,246)(192,195)(193,194)(196,209)(197,208)(198,207)(199,206)(200,210)
(211,213)(214,215)(216,230)(217,229)(218,228)(219,227)(220,226)(231,233)
(234,235);
poly := sub<Sym(250)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope