Polytope of Type {20,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,10}*2000d
if this polytope has a name.
Group : SmallGroup(2000,482)
Rank : 3
Schlafli Type : {20,10}
Number of vertices, edges, etc : 100, 500, 50
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {20,10}*1000c
   5-fold quotients : {4,10}*400
   10-fold quotients : {4,10}*200
   125-fold quotients : {4,2}*16
   250-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 59)(  7, 58)(  8, 57)(  9, 56)( 10, 60)( 11,114)
( 12,113)( 13,112)( 14,111)( 15,115)( 16, 41)( 17, 45)( 18, 44)( 19, 43)
( 20, 42)( 21,100)( 22, 99)( 23, 98)( 24, 97)( 25, 96)( 26,101)( 27,105)
( 28,104)( 29,103)( 30,102)( 31, 34)( 32, 33)( 36, 89)( 37, 88)( 38, 87)
( 39, 86)( 40, 90)( 46, 75)( 47, 74)( 48, 73)( 49, 72)( 50, 71)( 51, 76)
( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 61, 64)( 62, 63)( 66,116)( 67,120)
( 68,119)( 69,118)( 70,117)( 81,109)( 82,108)( 83,107)( 84,106)( 85,110)
( 92, 95)( 93, 94)(121,125)(122,124)(127,130)(128,129)(131,184)(132,183)
(133,182)(134,181)(135,185)(136,239)(137,238)(138,237)(139,236)(140,240)
(141,166)(142,170)(143,169)(144,168)(145,167)(146,225)(147,224)(148,223)
(149,222)(150,221)(151,226)(152,230)(153,229)(154,228)(155,227)(156,159)
(157,158)(161,214)(162,213)(163,212)(164,211)(165,215)(171,200)(172,199)
(173,198)(174,197)(175,196)(176,201)(177,205)(178,204)(179,203)(180,202)
(186,189)(187,188)(191,241)(192,245)(193,244)(194,243)(195,242)(206,234)
(207,233)(208,232)(209,231)(210,235)(217,220)(218,219)(246,250)(247,249);;
s1 := (  1,  2)(  3,  5)(  6, 42)(  7, 41)(  8, 45)(  9, 44)( 10, 43)( 11, 60)
( 12, 59)( 13, 58)( 14, 57)( 15, 56)( 16, 96)( 17,100)( 18, 99)( 19, 98)
( 20, 97)( 21,115)( 22,114)( 23,113)( 24,112)( 25,111)( 26, 62)( 27, 61)
( 28, 65)( 29, 64)( 30, 63)( 31, 79)( 32, 78)( 33, 77)( 34, 76)( 35, 80)
( 36,119)( 37,118)( 38,117)( 39,116)( 40,120)( 46, 48)( 49, 50)( 51,121)
( 52,125)( 53,124)( 54,123)( 55,122)( 66, 67)( 68, 70)( 71, 85)( 72, 84)
( 73, 83)( 74, 82)( 75, 81)( 86, 89)( 87, 88)( 91,101)( 92,105)( 93,104)
( 94,103)( 95,102)(106,109)(107,108)(126,127)(128,130)(131,167)(132,166)
(133,170)(134,169)(135,168)(136,185)(137,184)(138,183)(139,182)(140,181)
(141,221)(142,225)(143,224)(144,223)(145,222)(146,240)(147,239)(148,238)
(149,237)(150,236)(151,187)(152,186)(153,190)(154,189)(155,188)(156,204)
(157,203)(158,202)(159,201)(160,205)(161,244)(162,243)(163,242)(164,241)
(165,245)(171,173)(174,175)(176,246)(177,250)(178,249)(179,248)(180,247)
(191,192)(193,195)(196,210)(197,209)(198,208)(199,207)(200,206)(211,214)
(212,213)(216,226)(217,230)(218,229)(219,228)(220,227)(231,234)(232,233);;
s2 := (  1,160)(  2,156)(  3,157)(  4,158)(  5,159)(  6,154)(  7,155)(  8,151)
(  9,152)( 10,153)( 11,173)( 12,174)( 13,175)( 14,171)( 15,172)( 16,167)
( 17,168)( 18,169)( 19,170)( 20,166)( 21,161)( 22,162)( 23,163)( 24,164)
( 25,165)( 26,133)( 27,134)( 28,135)( 29,131)( 30,132)( 31,127)( 32,128)
( 33,129)( 34,130)( 35,126)( 36,146)( 37,147)( 38,148)( 39,149)( 40,150)
( 41,145)( 42,141)( 43,142)( 44,143)( 45,144)( 46,139)( 47,140)( 48,136)
( 49,137)( 50,138)( 51,231)( 52,232)( 53,233)( 54,234)( 55,235)( 56,230)
( 57,226)( 58,227)( 59,228)( 60,229)( 61,249)( 62,250)( 63,246)( 64,247)
( 65,248)( 66,243)( 67,244)( 68,245)( 69,241)( 70,242)( 71,237)( 72,238)
( 73,239)( 74,240)( 75,236)( 76,209)( 77,210)( 78,206)( 79,207)( 80,208)
( 81,203)( 82,204)( 83,205)( 84,201)( 85,202)( 86,222)( 87,223)( 88,224)
( 89,225)( 90,221)( 91,216)( 92,217)( 93,218)( 94,219)( 95,220)( 96,215)
( 97,211)( 98,212)( 99,213)(100,214)(101,182)(102,183)(103,184)(104,185)
(105,181)(106,176)(107,177)(108,178)(109,179)(110,180)(111,200)(112,196)
(113,197)(114,198)(115,199)(116,194)(117,195)(118,191)(119,192)(120,193)
(121,188)(122,189)(123,190)(124,186)(125,187);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(250)!(  2,  5)(  3,  4)(  6, 59)(  7, 58)(  8, 57)(  9, 56)( 10, 60)
( 11,114)( 12,113)( 13,112)( 14,111)( 15,115)( 16, 41)( 17, 45)( 18, 44)
( 19, 43)( 20, 42)( 21,100)( 22, 99)( 23, 98)( 24, 97)( 25, 96)( 26,101)
( 27,105)( 28,104)( 29,103)( 30,102)( 31, 34)( 32, 33)( 36, 89)( 37, 88)
( 38, 87)( 39, 86)( 40, 90)( 46, 75)( 47, 74)( 48, 73)( 49, 72)( 50, 71)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 61, 64)( 62, 63)( 66,116)
( 67,120)( 68,119)( 69,118)( 70,117)( 81,109)( 82,108)( 83,107)( 84,106)
( 85,110)( 92, 95)( 93, 94)(121,125)(122,124)(127,130)(128,129)(131,184)
(132,183)(133,182)(134,181)(135,185)(136,239)(137,238)(138,237)(139,236)
(140,240)(141,166)(142,170)(143,169)(144,168)(145,167)(146,225)(147,224)
(148,223)(149,222)(150,221)(151,226)(152,230)(153,229)(154,228)(155,227)
(156,159)(157,158)(161,214)(162,213)(163,212)(164,211)(165,215)(171,200)
(172,199)(173,198)(174,197)(175,196)(176,201)(177,205)(178,204)(179,203)
(180,202)(186,189)(187,188)(191,241)(192,245)(193,244)(194,243)(195,242)
(206,234)(207,233)(208,232)(209,231)(210,235)(217,220)(218,219)(246,250)
(247,249);
s1 := Sym(250)!(  1,  2)(  3,  5)(  6, 42)(  7, 41)(  8, 45)(  9, 44)( 10, 43)
( 11, 60)( 12, 59)( 13, 58)( 14, 57)( 15, 56)( 16, 96)( 17,100)( 18, 99)
( 19, 98)( 20, 97)( 21,115)( 22,114)( 23,113)( 24,112)( 25,111)( 26, 62)
( 27, 61)( 28, 65)( 29, 64)( 30, 63)( 31, 79)( 32, 78)( 33, 77)( 34, 76)
( 35, 80)( 36,119)( 37,118)( 38,117)( 39,116)( 40,120)( 46, 48)( 49, 50)
( 51,121)( 52,125)( 53,124)( 54,123)( 55,122)( 66, 67)( 68, 70)( 71, 85)
( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 86, 89)( 87, 88)( 91,101)( 92,105)
( 93,104)( 94,103)( 95,102)(106,109)(107,108)(126,127)(128,130)(131,167)
(132,166)(133,170)(134,169)(135,168)(136,185)(137,184)(138,183)(139,182)
(140,181)(141,221)(142,225)(143,224)(144,223)(145,222)(146,240)(147,239)
(148,238)(149,237)(150,236)(151,187)(152,186)(153,190)(154,189)(155,188)
(156,204)(157,203)(158,202)(159,201)(160,205)(161,244)(162,243)(163,242)
(164,241)(165,245)(171,173)(174,175)(176,246)(177,250)(178,249)(179,248)
(180,247)(191,192)(193,195)(196,210)(197,209)(198,208)(199,207)(200,206)
(211,214)(212,213)(216,226)(217,230)(218,229)(219,228)(220,227)(231,234)
(232,233);
s2 := Sym(250)!(  1,160)(  2,156)(  3,157)(  4,158)(  5,159)(  6,154)(  7,155)
(  8,151)(  9,152)( 10,153)( 11,173)( 12,174)( 13,175)( 14,171)( 15,172)
( 16,167)( 17,168)( 18,169)( 19,170)( 20,166)( 21,161)( 22,162)( 23,163)
( 24,164)( 25,165)( 26,133)( 27,134)( 28,135)( 29,131)( 30,132)( 31,127)
( 32,128)( 33,129)( 34,130)( 35,126)( 36,146)( 37,147)( 38,148)( 39,149)
( 40,150)( 41,145)( 42,141)( 43,142)( 44,143)( 45,144)( 46,139)( 47,140)
( 48,136)( 49,137)( 50,138)( 51,231)( 52,232)( 53,233)( 54,234)( 55,235)
( 56,230)( 57,226)( 58,227)( 59,228)( 60,229)( 61,249)( 62,250)( 63,246)
( 64,247)( 65,248)( 66,243)( 67,244)( 68,245)( 69,241)( 70,242)( 71,237)
( 72,238)( 73,239)( 74,240)( 75,236)( 76,209)( 77,210)( 78,206)( 79,207)
( 80,208)( 81,203)( 82,204)( 83,205)( 84,201)( 85,202)( 86,222)( 87,223)
( 88,224)( 89,225)( 90,221)( 91,216)( 92,217)( 93,218)( 94,219)( 95,220)
( 96,215)( 97,211)( 98,212)( 99,213)(100,214)(101,182)(102,183)(103,184)
(104,185)(105,181)(106,176)(107,177)(108,178)(109,179)(110,180)(111,200)
(112,196)(113,197)(114,198)(115,199)(116,194)(117,195)(118,191)(119,192)
(120,193)(121,188)(122,189)(123,190)(124,186)(125,187);
poly := sub<Sym(250)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope