include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,10}*2000
if this polytope has a name.
Group : SmallGroup(2000,482)
Rank : 4
Schlafli Type : {2,4,10}
Number of vertices, edges, etc : 2, 50, 250, 125
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,4,10}*400
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 8, 34)( 9, 33)( 10, 37)( 11, 36)( 12, 35)( 13, 66)
( 14, 65)( 15, 64)( 16, 63)( 17, 67)( 18, 94)( 19, 93)( 20, 97)( 21, 96)
( 22, 95)( 23,123)( 24,127)( 25,126)( 26,125)( 27,124)( 28,103)( 29,107)
( 30,106)( 31,105)( 32,104)( 38, 41)( 39, 40)( 43, 69)( 44, 68)( 45, 72)
( 46, 71)( 47, 70)( 48, 98)( 49,102)( 50,101)( 51,100)( 52, 99)( 53, 78)
( 54, 82)( 55, 81)( 56, 80)( 57, 79)( 58,109)( 59,108)( 60,112)( 61,111)
( 62,110)( 74, 77)( 75, 76)( 83, 84)( 85, 87)( 88,116)( 89,115)( 90,114)
( 91,113)( 92,117)(118,119)(120,122);;
s2 := ( 4, 7)( 5, 6)( 8, 96)( 9, 95)( 10, 94)( 11, 93)( 12, 97)( 13, 33)
( 14, 37)( 15, 36)( 16, 35)( 17, 34)( 18,124)( 19,123)( 20,127)( 21,126)
( 22,125)( 23, 64)( 24, 63)( 25, 67)( 26, 66)( 27, 65)( 28, 73)( 29, 77)
( 30, 76)( 31, 75)( 32, 74)( 38, 82)( 39, 81)( 40, 80)( 41, 79)( 42, 78)
( 43, 45)( 46, 47)( 48,112)( 49,111)( 50,110)( 51,109)( 52,108)( 53,121)
( 54,120)( 55,119)( 56,118)( 57,122)( 59, 62)( 60, 61)( 68, 89)( 69, 88)
( 70, 92)( 71, 91)( 72, 90)( 83,106)( 84,105)( 85,104)( 86,103)( 87,107)
( 98,102)( 99,101)(113,117)(114,116);;
s3 := ( 3, 73)( 4, 74)( 5, 75)( 6, 76)( 7, 77)( 8, 68)( 9, 69)( 10, 70)
( 11, 71)( 12, 72)( 13, 63)( 14, 64)( 15, 65)( 16, 66)( 17, 67)( 18, 58)
( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 53)( 24, 54)( 25, 55)( 26, 56)
( 27, 57)( 28, 48)( 29, 49)( 30, 50)( 31, 51)( 32, 52)( 33, 43)( 34, 44)
( 35, 45)( 36, 46)( 37, 47)( 78,123)( 79,124)( 80,125)( 81,126)( 82,127)
( 83,118)( 84,119)( 85,120)( 86,121)( 87,122)( 88,113)( 89,114)( 90,115)
( 91,116)( 92,117)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,103)
( 99,104)(100,105)(101,106)(102,107);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(127)!(1,2);
s1 := Sym(127)!( 4, 7)( 5, 6)( 8, 34)( 9, 33)( 10, 37)( 11, 36)( 12, 35)
( 13, 66)( 14, 65)( 15, 64)( 16, 63)( 17, 67)( 18, 94)( 19, 93)( 20, 97)
( 21, 96)( 22, 95)( 23,123)( 24,127)( 25,126)( 26,125)( 27,124)( 28,103)
( 29,107)( 30,106)( 31,105)( 32,104)( 38, 41)( 39, 40)( 43, 69)( 44, 68)
( 45, 72)( 46, 71)( 47, 70)( 48, 98)( 49,102)( 50,101)( 51,100)( 52, 99)
( 53, 78)( 54, 82)( 55, 81)( 56, 80)( 57, 79)( 58,109)( 59,108)( 60,112)
( 61,111)( 62,110)( 74, 77)( 75, 76)( 83, 84)( 85, 87)( 88,116)( 89,115)
( 90,114)( 91,113)( 92,117)(118,119)(120,122);
s2 := Sym(127)!( 4, 7)( 5, 6)( 8, 96)( 9, 95)( 10, 94)( 11, 93)( 12, 97)
( 13, 33)( 14, 37)( 15, 36)( 16, 35)( 17, 34)( 18,124)( 19,123)( 20,127)
( 21,126)( 22,125)( 23, 64)( 24, 63)( 25, 67)( 26, 66)( 27, 65)( 28, 73)
( 29, 77)( 30, 76)( 31, 75)( 32, 74)( 38, 82)( 39, 81)( 40, 80)( 41, 79)
( 42, 78)( 43, 45)( 46, 47)( 48,112)( 49,111)( 50,110)( 51,109)( 52,108)
( 53,121)( 54,120)( 55,119)( 56,118)( 57,122)( 59, 62)( 60, 61)( 68, 89)
( 69, 88)( 70, 92)( 71, 91)( 72, 90)( 83,106)( 84,105)( 85,104)( 86,103)
( 87,107)( 98,102)( 99,101)(113,117)(114,116);
s3 := Sym(127)!( 3, 73)( 4, 74)( 5, 75)( 6, 76)( 7, 77)( 8, 68)( 9, 69)
( 10, 70)( 11, 71)( 12, 72)( 13, 63)( 14, 64)( 15, 65)( 16, 66)( 17, 67)
( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 53)( 24, 54)( 25, 55)
( 26, 56)( 27, 57)( 28, 48)( 29, 49)( 30, 50)( 31, 51)( 32, 52)( 33, 43)
( 34, 44)( 35, 45)( 36, 46)( 37, 47)( 78,123)( 79,124)( 80,125)( 81,126)
( 82,127)( 83,118)( 84,119)( 85,120)( 86,121)( 87,122)( 88,113)( 89,114)
( 90,115)( 91,116)( 92,117)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)
( 98,103)( 99,104)(100,105)(101,106)(102,107);
poly := sub<Sym(127)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2 >;
to this polytope