include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,10}*400
if this polytope has a name.
Group : SmallGroup(400,211)
Rank : 4
Schlafli Type : {2,4,10}
Number of vertices, edges, etc : 2, 10, 50, 25
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,10,2} of size 800
Vertex Figure Of :
{2,2,4,10} of size 800
{3,2,4,10} of size 1200
{4,2,4,10} of size 1600
{5,2,4,10} of size 2000
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,10}*800, {2,4,10}*800
3-fold covers : {6,4,10}*1200, {2,12,10}*1200
4-fold covers : {8,4,10}*1600, {2,8,10}*1600, {4,4,10}*1600, {2,4,20}*1600
5-fold covers : {2,4,10}*2000, {2,20,10}*2000a, {2,20,10}*2000b, {2,20,10}*2000c, {2,20,10}*2000d, {10,4,10}*2000b, {2,20,10}*2000e
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 9,12)(10,11);;
s2 := ( 3, 8)( 4,10)( 5,12)( 6, 9)( 7,11);;
s3 := ( 3, 4)( 5, 7)( 9,12)(10,11);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(12)!(1,2);
s1 := Sym(12)!( 9,12)(10,11);
s2 := Sym(12)!( 3, 8)( 4,10)( 5,12)( 6, 9)( 7,11);
s3 := Sym(12)!( 3, 4)( 5, 7)( 9,12)(10,11);
poly := sub<Sym(12)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2 >;
to this polytope