include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,20,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,20,2}*2000d
if this polytope has a name.
Group : SmallGroup(2000,482)
Rank : 4
Schlafli Type : {10,20,2}
Number of vertices, edges, etc : 25, 250, 50, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {10,4,2}*400
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 6, 23)( 7, 24)( 8, 25)( 9, 21)( 10, 22)( 11, 20)( 12, 16)( 13, 17)
( 14, 18)( 15, 19)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,123)
( 32,124)( 33,125)( 34,121)( 35,122)( 36,120)( 37,116)( 38,117)( 39,118)
( 40,119)( 41,112)( 42,113)( 43,114)( 44,115)( 45,111)( 46,109)( 47,110)
( 48,106)( 49,107)( 50,108)( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)
( 56, 98)( 57, 99)( 58,100)( 59, 96)( 60, 97)( 61, 95)( 62, 91)( 63, 92)
( 64, 93)( 65, 94)( 66, 87)( 67, 88)( 68, 89)( 69, 90)( 70, 86)( 71, 84)
( 72, 85)( 73, 81)( 74, 82)( 75, 83);;
s1 := ( 1, 26)( 2, 30)( 3, 29)( 4, 28)( 5, 27)( 6, 58)( 7, 57)( 8, 56)
( 9, 60)( 10, 59)( 11, 86)( 12, 90)( 13, 89)( 14, 88)( 15, 87)( 16,120)
( 17,119)( 18,118)( 19,117)( 20,116)( 21, 25)( 22, 24)( 31, 33)( 34, 35)
( 36, 61)( 37, 65)( 38, 64)( 39, 63)( 40, 62)( 41, 95)( 42, 94)( 43, 93)
( 44, 92)( 45, 91)( 46,125)( 47,124)( 48,123)( 49,122)( 50,121)( 51,101)
( 52,105)( 53,104)( 54,103)( 55,102)( 66, 70)( 67, 69)( 71,100)( 72, 99)
( 73, 98)( 74, 97)( 75, 96)( 77, 80)( 78, 79)( 81,108)( 82,107)( 83,106)
( 84,110)( 85,109)(112,115)(113,114);;
s2 := ( 1, 3)( 4, 5)( 6, 91)( 7, 95)( 8, 94)( 9, 93)( 10, 92)( 11, 33)
( 12, 32)( 13, 31)( 14, 35)( 15, 34)( 16,124)( 17,123)( 18,122)( 19,121)
( 20,125)( 21, 64)( 22, 63)( 23, 62)( 24, 61)( 25, 65)( 26, 73)( 27, 72)
( 28, 71)( 29, 75)( 30, 74)( 36, 77)( 37, 76)( 38, 80)( 39, 79)( 40, 78)
( 41, 45)( 42, 44)( 46,107)( 47,106)( 48,110)( 49,109)( 50,108)( 51,116)
( 52,120)( 53,119)( 54,118)( 55,117)( 56, 58)( 59, 60)( 66, 89)( 67, 88)
( 68, 87)( 69, 86)( 70, 90)( 81,101)( 82,105)( 83,104)( 84,103)( 85,102)
( 96, 97)( 98,100)(111,112)(113,115);;
s3 := (126,127);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(127)!( 6, 23)( 7, 24)( 8, 25)( 9, 21)( 10, 22)( 11, 20)( 12, 16)
( 13, 17)( 14, 18)( 15, 19)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)
( 31,123)( 32,124)( 33,125)( 34,121)( 35,122)( 36,120)( 37,116)( 38,117)
( 39,118)( 40,119)( 41,112)( 42,113)( 43,114)( 44,115)( 45,111)( 46,109)
( 47,110)( 48,106)( 49,107)( 50,108)( 51, 76)( 52, 77)( 53, 78)( 54, 79)
( 55, 80)( 56, 98)( 57, 99)( 58,100)( 59, 96)( 60, 97)( 61, 95)( 62, 91)
( 63, 92)( 64, 93)( 65, 94)( 66, 87)( 67, 88)( 68, 89)( 69, 90)( 70, 86)
( 71, 84)( 72, 85)( 73, 81)( 74, 82)( 75, 83);
s1 := Sym(127)!( 1, 26)( 2, 30)( 3, 29)( 4, 28)( 5, 27)( 6, 58)( 7, 57)
( 8, 56)( 9, 60)( 10, 59)( 11, 86)( 12, 90)( 13, 89)( 14, 88)( 15, 87)
( 16,120)( 17,119)( 18,118)( 19,117)( 20,116)( 21, 25)( 22, 24)( 31, 33)
( 34, 35)( 36, 61)( 37, 65)( 38, 64)( 39, 63)( 40, 62)( 41, 95)( 42, 94)
( 43, 93)( 44, 92)( 45, 91)( 46,125)( 47,124)( 48,123)( 49,122)( 50,121)
( 51,101)( 52,105)( 53,104)( 54,103)( 55,102)( 66, 70)( 67, 69)( 71,100)
( 72, 99)( 73, 98)( 74, 97)( 75, 96)( 77, 80)( 78, 79)( 81,108)( 82,107)
( 83,106)( 84,110)( 85,109)(112,115)(113,114);
s2 := Sym(127)!( 1, 3)( 4, 5)( 6, 91)( 7, 95)( 8, 94)( 9, 93)( 10, 92)
( 11, 33)( 12, 32)( 13, 31)( 14, 35)( 15, 34)( 16,124)( 17,123)( 18,122)
( 19,121)( 20,125)( 21, 64)( 22, 63)( 23, 62)( 24, 61)( 25, 65)( 26, 73)
( 27, 72)( 28, 71)( 29, 75)( 30, 74)( 36, 77)( 37, 76)( 38, 80)( 39, 79)
( 40, 78)( 41, 45)( 42, 44)( 46,107)( 47,106)( 48,110)( 49,109)( 50,108)
( 51,116)( 52,120)( 53,119)( 54,118)( 55,117)( 56, 58)( 59, 60)( 66, 89)
( 67, 88)( 68, 87)( 69, 86)( 70, 90)( 81,101)( 82,105)( 83,104)( 84,103)
( 85,102)( 96, 97)( 98,100)(111,112)(113,115);
s3 := Sym(127)!(126,127);
poly := sub<Sym(127)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1 >;
to this polytope