include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,20,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,20,10}*2000c
if this polytope has a name.
Group : SmallGroup(2000,482)
Rank : 4
Schlafli Type : {2,20,10}
Number of vertices, edges, etc : 2, 50, 250, 25
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,4,10}*400
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 8, 34)( 9, 33)( 10, 37)( 11, 36)( 12, 35)( 13, 66)
( 14, 65)( 15, 64)( 16, 63)( 17, 67)( 18, 94)( 19, 93)( 20, 97)( 21, 96)
( 22, 95)( 23,123)( 24,127)( 25,126)( 26,125)( 27,124)( 28,103)( 29,107)
( 30,106)( 31,105)( 32,104)( 38, 41)( 39, 40)( 43, 69)( 44, 68)( 45, 72)
( 46, 71)( 47, 70)( 48, 98)( 49,102)( 50,101)( 51,100)( 52, 99)( 53, 78)
( 54, 82)( 55, 81)( 56, 80)( 57, 79)( 58,109)( 59,108)( 60,112)( 61,111)
( 62,110)( 74, 77)( 75, 76)( 83, 84)( 85, 87)( 88,116)( 89,115)( 90,114)
( 91,113)( 92,117)(118,119)(120,122);;
s2 := ( 3, 5)( 6, 7)( 8, 93)( 9, 97)( 10, 96)( 11, 95)( 12, 94)( 13, 35)
( 14, 34)( 15, 33)( 16, 37)( 17, 36)( 18,126)( 19,125)( 20,124)( 21,123)
( 22,127)( 23, 66)( 24, 65)( 25, 64)( 26, 63)( 27, 67)( 28, 75)( 29, 74)
( 30, 73)( 31, 77)( 32, 76)( 38, 79)( 39, 78)( 40, 82)( 41, 81)( 42, 80)
( 43, 47)( 44, 46)( 48,109)( 49,108)( 50,112)( 51,111)( 52,110)( 53,118)
( 54,122)( 55,121)( 56,120)( 57,119)( 58, 60)( 61, 62)( 68, 91)( 69, 90)
( 70, 89)( 71, 88)( 72, 92)( 83,103)( 84,107)( 85,106)( 86,105)( 87,104)
( 98, 99)(100,102)(113,114)(115,117);;
s3 := ( 3, 42)( 4, 38)( 5, 39)( 6, 40)( 7, 41)( 8, 33)( 9, 34)( 10, 35)
( 11, 36)( 12, 37)( 13, 29)( 14, 30)( 15, 31)( 16, 32)( 17, 28)( 18, 50)
( 19, 51)( 20, 52)( 21, 48)( 22, 49)( 23, 46)( 24, 47)( 25, 43)( 26, 44)
( 27, 45)( 53,117)( 54,113)( 55,114)( 56,115)( 57,116)( 58,108)( 59,109)
( 60,110)( 61,111)( 62,112)( 63,104)( 64,105)( 65,106)( 66,107)( 67,103)
( 68,125)( 69,126)( 70,127)( 71,123)( 72,124)( 73,121)( 74,122)( 75,118)
( 76,119)( 77,120)( 78, 92)( 79, 88)( 80, 89)( 81, 90)( 82, 91)( 93,100)
( 94,101)( 95,102)( 96, 98)( 97, 99);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(127)!(1,2);
s1 := Sym(127)!( 4, 7)( 5, 6)( 8, 34)( 9, 33)( 10, 37)( 11, 36)( 12, 35)
( 13, 66)( 14, 65)( 15, 64)( 16, 63)( 17, 67)( 18, 94)( 19, 93)( 20, 97)
( 21, 96)( 22, 95)( 23,123)( 24,127)( 25,126)( 26,125)( 27,124)( 28,103)
( 29,107)( 30,106)( 31,105)( 32,104)( 38, 41)( 39, 40)( 43, 69)( 44, 68)
( 45, 72)( 46, 71)( 47, 70)( 48, 98)( 49,102)( 50,101)( 51,100)( 52, 99)
( 53, 78)( 54, 82)( 55, 81)( 56, 80)( 57, 79)( 58,109)( 59,108)( 60,112)
( 61,111)( 62,110)( 74, 77)( 75, 76)( 83, 84)( 85, 87)( 88,116)( 89,115)
( 90,114)( 91,113)( 92,117)(118,119)(120,122);
s2 := Sym(127)!( 3, 5)( 6, 7)( 8, 93)( 9, 97)( 10, 96)( 11, 95)( 12, 94)
( 13, 35)( 14, 34)( 15, 33)( 16, 37)( 17, 36)( 18,126)( 19,125)( 20,124)
( 21,123)( 22,127)( 23, 66)( 24, 65)( 25, 64)( 26, 63)( 27, 67)( 28, 75)
( 29, 74)( 30, 73)( 31, 77)( 32, 76)( 38, 79)( 39, 78)( 40, 82)( 41, 81)
( 42, 80)( 43, 47)( 44, 46)( 48,109)( 49,108)( 50,112)( 51,111)( 52,110)
( 53,118)( 54,122)( 55,121)( 56,120)( 57,119)( 58, 60)( 61, 62)( 68, 91)
( 69, 90)( 70, 89)( 71, 88)( 72, 92)( 83,103)( 84,107)( 85,106)( 86,105)
( 87,104)( 98, 99)(100,102)(113,114)(115,117);
s3 := Sym(127)!( 3, 42)( 4, 38)( 5, 39)( 6, 40)( 7, 41)( 8, 33)( 9, 34)
( 10, 35)( 11, 36)( 12, 37)( 13, 29)( 14, 30)( 15, 31)( 16, 32)( 17, 28)
( 18, 50)( 19, 51)( 20, 52)( 21, 48)( 22, 49)( 23, 46)( 24, 47)( 25, 43)
( 26, 44)( 27, 45)( 53,117)( 54,113)( 55,114)( 56,115)( 57,116)( 58,108)
( 59,109)( 60,110)( 61,111)( 62,112)( 63,104)( 64,105)( 65,106)( 66,107)
( 67,103)( 68,125)( 69,126)( 70,127)( 71,123)( 72,124)( 73,121)( 74,122)
( 75,118)( 76,119)( 77,120)( 78, 92)( 79, 88)( 80, 89)( 81, 90)( 82, 91)
( 93,100)( 94,101)( 95,102)( 96, 98)( 97, 99);
poly := sub<Sym(127)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s1 >;
to this polytope