include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,50}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,50}*2000a
if this polytope has a name.
Group : SmallGroup(2000,500)
Rank : 4
Schlafli Type : {2,10,50}
Number of vertices, edges, etc : 2, 10, 250, 50
Order of s0s1s2s3 : 50
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,2,50}*400, {2,10,10}*400a
10-fold quotients : {2,2,25}*200
25-fold quotients : {2,2,10}*80, {2,10,2}*80
50-fold quotients : {2,2,5}*40, {2,5,2}*40
125-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 8, 23)( 9, 24)( 10, 25)( 11, 26)( 12, 27)( 13, 18)( 14, 19)( 15, 20)
( 16, 21)( 17, 22)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)( 38, 43)
( 39, 44)( 40, 45)( 41, 46)( 42, 47)( 58, 73)( 59, 74)( 60, 75)( 61, 76)
( 62, 77)( 63, 68)( 64, 69)( 65, 70)( 66, 71)( 67, 72)( 83, 98)( 84, 99)
( 85,100)( 86,101)( 87,102)( 88, 93)( 89, 94)( 90, 95)( 91, 96)( 92, 97)
(108,123)(109,124)(110,125)(111,126)(112,127)(113,118)(114,119)(115,120)
(116,121)(117,122)(133,148)(134,149)(135,150)(136,151)(137,152)(138,143)
(139,144)(140,145)(141,146)(142,147)(158,173)(159,174)(160,175)(161,176)
(162,177)(163,168)(164,169)(165,170)(166,171)(167,172)(183,198)(184,199)
(185,200)(186,201)(187,202)(188,193)(189,194)(190,195)(191,196)(192,197)
(208,223)(209,224)(210,225)(211,226)(212,227)(213,218)(214,219)(215,220)
(216,221)(217,222)(233,248)(234,249)(235,250)(236,251)(237,252)(238,243)
(239,244)(240,245)(241,246)(242,247);;
s2 := ( 3, 8)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 13, 23)( 14, 27)( 15, 26)
( 16, 25)( 17, 24)( 19, 22)( 20, 21)( 28,112)( 29,111)( 30,110)( 31,109)
( 32,108)( 33,107)( 34,106)( 35,105)( 36,104)( 37,103)( 38,127)( 39,126)
( 40,125)( 41,124)( 42,123)( 43,122)( 44,121)( 45,120)( 46,119)( 47,118)
( 48,117)( 49,116)( 50,115)( 51,114)( 52,113)( 53, 87)( 54, 86)( 55, 85)
( 56, 84)( 57, 83)( 58, 82)( 59, 81)( 60, 80)( 61, 79)( 62, 78)( 63,102)
( 64,101)( 65,100)( 66, 99)( 67, 98)( 68, 97)( 69, 96)( 70, 95)( 71, 94)
( 72, 93)( 73, 92)( 74, 91)( 75, 90)( 76, 89)( 77, 88)(128,133)(129,137)
(130,136)(131,135)(132,134)(138,148)(139,152)(140,151)(141,150)(142,149)
(144,147)(145,146)(153,237)(154,236)(155,235)(156,234)(157,233)(158,232)
(159,231)(160,230)(161,229)(162,228)(163,252)(164,251)(165,250)(166,249)
(167,248)(168,247)(169,246)(170,245)(171,244)(172,243)(173,242)(174,241)
(175,240)(176,239)(177,238)(178,212)(179,211)(180,210)(181,209)(182,208)
(183,207)(184,206)(185,205)(186,204)(187,203)(188,227)(189,226)(190,225)
(191,224)(192,223)(193,222)(194,221)(195,220)(196,219)(197,218)(198,217)
(199,216)(200,215)(201,214)(202,213);;
s3 := ( 3,153)( 4,157)( 5,156)( 6,155)( 7,154)( 8,158)( 9,162)( 10,161)
( 11,160)( 12,159)( 13,163)( 14,167)( 15,166)( 16,165)( 17,164)( 18,168)
( 19,172)( 20,171)( 21,170)( 22,169)( 23,173)( 24,177)( 25,176)( 26,175)
( 27,174)( 28,128)( 29,132)( 30,131)( 31,130)( 32,129)( 33,133)( 34,137)
( 35,136)( 36,135)( 37,134)( 38,138)( 39,142)( 40,141)( 41,140)( 42,139)
( 43,143)( 44,147)( 45,146)( 46,145)( 47,144)( 48,148)( 49,152)( 50,151)
( 51,150)( 52,149)( 53,232)( 54,231)( 55,230)( 56,229)( 57,228)( 58,237)
( 59,236)( 60,235)( 61,234)( 62,233)( 63,242)( 64,241)( 65,240)( 66,239)
( 67,238)( 68,247)( 69,246)( 70,245)( 71,244)( 72,243)( 73,252)( 74,251)
( 75,250)( 76,249)( 77,248)( 78,207)( 79,206)( 80,205)( 81,204)( 82,203)
( 83,212)( 84,211)( 85,210)( 86,209)( 87,208)( 88,217)( 89,216)( 90,215)
( 91,214)( 92,213)( 93,222)( 94,221)( 95,220)( 96,219)( 97,218)( 98,227)
( 99,226)(100,225)(101,224)(102,223)(103,182)(104,181)(105,180)(106,179)
(107,178)(108,187)(109,186)(110,185)(111,184)(112,183)(113,192)(114,191)
(115,190)(116,189)(117,188)(118,197)(119,196)(120,195)(121,194)(122,193)
(123,202)(124,201)(125,200)(126,199)(127,198);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(252)!(1,2);
s1 := Sym(252)!( 8, 23)( 9, 24)( 10, 25)( 11, 26)( 12, 27)( 13, 18)( 14, 19)
( 15, 20)( 16, 21)( 17, 22)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)
( 38, 43)( 39, 44)( 40, 45)( 41, 46)( 42, 47)( 58, 73)( 59, 74)( 60, 75)
( 61, 76)( 62, 77)( 63, 68)( 64, 69)( 65, 70)( 66, 71)( 67, 72)( 83, 98)
( 84, 99)( 85,100)( 86,101)( 87,102)( 88, 93)( 89, 94)( 90, 95)( 91, 96)
( 92, 97)(108,123)(109,124)(110,125)(111,126)(112,127)(113,118)(114,119)
(115,120)(116,121)(117,122)(133,148)(134,149)(135,150)(136,151)(137,152)
(138,143)(139,144)(140,145)(141,146)(142,147)(158,173)(159,174)(160,175)
(161,176)(162,177)(163,168)(164,169)(165,170)(166,171)(167,172)(183,198)
(184,199)(185,200)(186,201)(187,202)(188,193)(189,194)(190,195)(191,196)
(192,197)(208,223)(209,224)(210,225)(211,226)(212,227)(213,218)(214,219)
(215,220)(216,221)(217,222)(233,248)(234,249)(235,250)(236,251)(237,252)
(238,243)(239,244)(240,245)(241,246)(242,247);
s2 := Sym(252)!( 3, 8)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 13, 23)( 14, 27)
( 15, 26)( 16, 25)( 17, 24)( 19, 22)( 20, 21)( 28,112)( 29,111)( 30,110)
( 31,109)( 32,108)( 33,107)( 34,106)( 35,105)( 36,104)( 37,103)( 38,127)
( 39,126)( 40,125)( 41,124)( 42,123)( 43,122)( 44,121)( 45,120)( 46,119)
( 47,118)( 48,117)( 49,116)( 50,115)( 51,114)( 52,113)( 53, 87)( 54, 86)
( 55, 85)( 56, 84)( 57, 83)( 58, 82)( 59, 81)( 60, 80)( 61, 79)( 62, 78)
( 63,102)( 64,101)( 65,100)( 66, 99)( 67, 98)( 68, 97)( 69, 96)( 70, 95)
( 71, 94)( 72, 93)( 73, 92)( 74, 91)( 75, 90)( 76, 89)( 77, 88)(128,133)
(129,137)(130,136)(131,135)(132,134)(138,148)(139,152)(140,151)(141,150)
(142,149)(144,147)(145,146)(153,237)(154,236)(155,235)(156,234)(157,233)
(158,232)(159,231)(160,230)(161,229)(162,228)(163,252)(164,251)(165,250)
(166,249)(167,248)(168,247)(169,246)(170,245)(171,244)(172,243)(173,242)
(174,241)(175,240)(176,239)(177,238)(178,212)(179,211)(180,210)(181,209)
(182,208)(183,207)(184,206)(185,205)(186,204)(187,203)(188,227)(189,226)
(190,225)(191,224)(192,223)(193,222)(194,221)(195,220)(196,219)(197,218)
(198,217)(199,216)(200,215)(201,214)(202,213);
s3 := Sym(252)!( 3,153)( 4,157)( 5,156)( 6,155)( 7,154)( 8,158)( 9,162)
( 10,161)( 11,160)( 12,159)( 13,163)( 14,167)( 15,166)( 16,165)( 17,164)
( 18,168)( 19,172)( 20,171)( 21,170)( 22,169)( 23,173)( 24,177)( 25,176)
( 26,175)( 27,174)( 28,128)( 29,132)( 30,131)( 31,130)( 32,129)( 33,133)
( 34,137)( 35,136)( 36,135)( 37,134)( 38,138)( 39,142)( 40,141)( 41,140)
( 42,139)( 43,143)( 44,147)( 45,146)( 46,145)( 47,144)( 48,148)( 49,152)
( 50,151)( 51,150)( 52,149)( 53,232)( 54,231)( 55,230)( 56,229)( 57,228)
( 58,237)( 59,236)( 60,235)( 61,234)( 62,233)( 63,242)( 64,241)( 65,240)
( 66,239)( 67,238)( 68,247)( 69,246)( 70,245)( 71,244)( 72,243)( 73,252)
( 74,251)( 75,250)( 76,249)( 77,248)( 78,207)( 79,206)( 80,205)( 81,204)
( 82,203)( 83,212)( 84,211)( 85,210)( 86,209)( 87,208)( 88,217)( 89,216)
( 90,215)( 91,214)( 92,213)( 93,222)( 94,221)( 95,220)( 96,219)( 97,218)
( 98,227)( 99,226)(100,225)(101,224)(102,223)(103,182)(104,181)(105,180)
(106,179)(107,178)(108,187)(109,186)(110,185)(111,184)(112,183)(113,192)
(114,191)(115,190)(116,189)(117,188)(118,197)(119,196)(120,195)(121,194)
(122,193)(123,202)(124,201)(125,200)(126,199)(127,198);
poly := sub<Sym(252)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope