Polytope of Type {50,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {50,10,2}*2000a
if this polytope has a name.
Group : SmallGroup(2000,500)
Rank : 4
Schlafli Type : {50,10,2}
Number of vertices, edges, etc : 50, 250, 10, 2
Order of s0s1s2s3 : 50
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {50,2,2}*400, {10,10,2}*400a
   10-fold quotients : {25,2,2}*200
   25-fold quotients : {2,10,2}*80, {10,2,2}*80
   50-fold quotients : {2,5,2}*40, {5,2,2}*40
   125-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 26,105)( 27,104)( 28,103)( 29,102)( 30,101)( 31,110)
( 32,109)( 33,108)( 34,107)( 35,106)( 36,115)( 37,114)( 38,113)( 39,112)
( 40,111)( 41,120)( 42,119)( 43,118)( 44,117)( 45,116)( 46,125)( 47,124)
( 48,123)( 49,122)( 50,121)( 51, 80)( 52, 79)( 53, 78)( 54, 77)( 55, 76)
( 56, 85)( 57, 84)( 58, 83)( 59, 82)( 60, 81)( 61, 90)( 62, 89)( 63, 88)
( 64, 87)( 65, 86)( 66, 95)( 67, 94)( 68, 93)( 69, 92)( 70, 91)( 71,100)
( 72, 99)( 73, 98)( 74, 97)( 75, 96)(127,130)(128,129)(132,135)(133,134)
(137,140)(138,139)(142,145)(143,144)(147,150)(148,149)(151,230)(152,229)
(153,228)(154,227)(155,226)(156,235)(157,234)(158,233)(159,232)(160,231)
(161,240)(162,239)(163,238)(164,237)(165,236)(166,245)(167,244)(168,243)
(169,242)(170,241)(171,250)(172,249)(173,248)(174,247)(175,246)(176,205)
(177,204)(178,203)(179,202)(180,201)(181,210)(182,209)(183,208)(184,207)
(185,206)(186,215)(187,214)(188,213)(189,212)(190,211)(191,220)(192,219)
(193,218)(194,217)(195,216)(196,225)(197,224)(198,223)(199,222)(200,221);;
s1 := (  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 46)(  7, 50)(  8, 49)
(  9, 48)( 10, 47)( 11, 41)( 12, 45)( 13, 44)( 14, 43)( 15, 42)( 16, 36)
( 17, 40)( 18, 39)( 19, 38)( 20, 37)( 21, 31)( 22, 35)( 23, 34)( 24, 33)
( 25, 32)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,125)( 57,124)
( 58,123)( 59,122)( 60,121)( 61,120)( 62,119)( 63,118)( 64,117)( 65,116)
( 66,115)( 67,114)( 68,113)( 69,112)( 70,111)( 71,110)( 72,109)( 73,108)
( 74,107)( 75,106)( 76, 80)( 77, 79)( 81,100)( 82, 99)( 83, 98)( 84, 97)
( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)( 90, 91)(126,151)(127,155)
(128,154)(129,153)(130,152)(131,171)(132,175)(133,174)(134,173)(135,172)
(136,166)(137,170)(138,169)(139,168)(140,167)(141,161)(142,165)(143,164)
(144,163)(145,162)(146,156)(147,160)(148,159)(149,158)(150,157)(176,230)
(177,229)(178,228)(179,227)(180,226)(181,250)(182,249)(183,248)(184,247)
(185,246)(186,245)(187,244)(188,243)(189,242)(190,241)(191,240)(192,239)
(193,238)(194,237)(195,236)(196,235)(197,234)(198,233)(199,232)(200,231)
(201,205)(202,204)(206,225)(207,224)(208,223)(209,222)(210,221)(211,220)
(212,219)(213,218)(214,217)(215,216);;
s2 := (  1,131)(  2,132)(  3,133)(  4,134)(  5,135)(  6,126)(  7,127)(  8,128)
(  9,129)( 10,130)( 11,146)( 12,147)( 13,148)( 14,149)( 15,150)( 16,141)
( 17,142)( 18,143)( 19,144)( 20,145)( 21,136)( 22,137)( 23,138)( 24,139)
( 25,140)( 26,156)( 27,157)( 28,158)( 29,159)( 30,160)( 31,151)( 32,152)
( 33,153)( 34,154)( 35,155)( 36,171)( 37,172)( 38,173)( 39,174)( 40,175)
( 41,166)( 42,167)( 43,168)( 44,169)( 45,170)( 46,161)( 47,162)( 48,163)
( 49,164)( 50,165)( 51,181)( 52,182)( 53,183)( 54,184)( 55,185)( 56,176)
( 57,177)( 58,178)( 59,179)( 60,180)( 61,196)( 62,197)( 63,198)( 64,199)
( 65,200)( 66,191)( 67,192)( 68,193)( 69,194)( 70,195)( 71,186)( 72,187)
( 73,188)( 74,189)( 75,190)( 76,206)( 77,207)( 78,208)( 79,209)( 80,210)
( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,221)( 87,222)( 88,223)
( 89,224)( 90,225)( 91,216)( 92,217)( 93,218)( 94,219)( 95,220)( 96,211)
( 97,212)( 98,213)( 99,214)(100,215)(101,231)(102,232)(103,233)(104,234)
(105,235)(106,226)(107,227)(108,228)(109,229)(110,230)(111,246)(112,247)
(113,248)(114,249)(115,250)(116,241)(117,242)(118,243)(119,244)(120,245)
(121,236)(122,237)(123,238)(124,239)(125,240);;
s3 := (251,252);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(252)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 26,105)( 27,104)( 28,103)( 29,102)( 30,101)
( 31,110)( 32,109)( 33,108)( 34,107)( 35,106)( 36,115)( 37,114)( 38,113)
( 39,112)( 40,111)( 41,120)( 42,119)( 43,118)( 44,117)( 45,116)( 46,125)
( 47,124)( 48,123)( 49,122)( 50,121)( 51, 80)( 52, 79)( 53, 78)( 54, 77)
( 55, 76)( 56, 85)( 57, 84)( 58, 83)( 59, 82)( 60, 81)( 61, 90)( 62, 89)
( 63, 88)( 64, 87)( 65, 86)( 66, 95)( 67, 94)( 68, 93)( 69, 92)( 70, 91)
( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)(127,130)(128,129)(132,135)
(133,134)(137,140)(138,139)(142,145)(143,144)(147,150)(148,149)(151,230)
(152,229)(153,228)(154,227)(155,226)(156,235)(157,234)(158,233)(159,232)
(160,231)(161,240)(162,239)(163,238)(164,237)(165,236)(166,245)(167,244)
(168,243)(169,242)(170,241)(171,250)(172,249)(173,248)(174,247)(175,246)
(176,205)(177,204)(178,203)(179,202)(180,201)(181,210)(182,209)(183,208)
(184,207)(185,206)(186,215)(187,214)(188,213)(189,212)(190,211)(191,220)
(192,219)(193,218)(194,217)(195,216)(196,225)(197,224)(198,223)(199,222)
(200,221);
s1 := Sym(252)!(  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 46)(  7, 50)
(  8, 49)(  9, 48)( 10, 47)( 11, 41)( 12, 45)( 13, 44)( 14, 43)( 15, 42)
( 16, 36)( 17, 40)( 18, 39)( 19, 38)( 20, 37)( 21, 31)( 22, 35)( 23, 34)
( 24, 33)( 25, 32)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,125)
( 57,124)( 58,123)( 59,122)( 60,121)( 61,120)( 62,119)( 63,118)( 64,117)
( 65,116)( 66,115)( 67,114)( 68,113)( 69,112)( 70,111)( 71,110)( 72,109)
( 73,108)( 74,107)( 75,106)( 76, 80)( 77, 79)( 81,100)( 82, 99)( 83, 98)
( 84, 97)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)( 90, 91)(126,151)
(127,155)(128,154)(129,153)(130,152)(131,171)(132,175)(133,174)(134,173)
(135,172)(136,166)(137,170)(138,169)(139,168)(140,167)(141,161)(142,165)
(143,164)(144,163)(145,162)(146,156)(147,160)(148,159)(149,158)(150,157)
(176,230)(177,229)(178,228)(179,227)(180,226)(181,250)(182,249)(183,248)
(184,247)(185,246)(186,245)(187,244)(188,243)(189,242)(190,241)(191,240)
(192,239)(193,238)(194,237)(195,236)(196,235)(197,234)(198,233)(199,232)
(200,231)(201,205)(202,204)(206,225)(207,224)(208,223)(209,222)(210,221)
(211,220)(212,219)(213,218)(214,217)(215,216);
s2 := Sym(252)!(  1,131)(  2,132)(  3,133)(  4,134)(  5,135)(  6,126)(  7,127)
(  8,128)(  9,129)( 10,130)( 11,146)( 12,147)( 13,148)( 14,149)( 15,150)
( 16,141)( 17,142)( 18,143)( 19,144)( 20,145)( 21,136)( 22,137)( 23,138)
( 24,139)( 25,140)( 26,156)( 27,157)( 28,158)( 29,159)( 30,160)( 31,151)
( 32,152)( 33,153)( 34,154)( 35,155)( 36,171)( 37,172)( 38,173)( 39,174)
( 40,175)( 41,166)( 42,167)( 43,168)( 44,169)( 45,170)( 46,161)( 47,162)
( 48,163)( 49,164)( 50,165)( 51,181)( 52,182)( 53,183)( 54,184)( 55,185)
( 56,176)( 57,177)( 58,178)( 59,179)( 60,180)( 61,196)( 62,197)( 63,198)
( 64,199)( 65,200)( 66,191)( 67,192)( 68,193)( 69,194)( 70,195)( 71,186)
( 72,187)( 73,188)( 74,189)( 75,190)( 76,206)( 77,207)( 78,208)( 79,209)
( 80,210)( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,221)( 87,222)
( 88,223)( 89,224)( 90,225)( 91,216)( 92,217)( 93,218)( 94,219)( 95,220)
( 96,211)( 97,212)( 98,213)( 99,214)(100,215)(101,231)(102,232)(103,233)
(104,234)(105,235)(106,226)(107,227)(108,228)(109,229)(110,230)(111,246)
(112,247)(113,248)(114,249)(115,250)(116,241)(117,242)(118,243)(119,244)
(120,245)(121,236)(122,237)(123,238)(124,239)(125,240);
s3 := Sym(252)!(251,252);
poly := sub<Sym(252)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope