Polytope of Type {10,10,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10,10}*2000c
if this polytope has a name.
Group : SmallGroup(2000,946)
Rank : 4
Schlafli Type : {10,10,10}
Number of vertices, edges, etc : 10, 50, 50, 10
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,10,5}*1000b
   5-fold quotients : {2,10,10}*400b, {10,2,10}*400
   10-fold quotients : {2,10,5}*200, {5,2,10}*200, {10,2,5}*200
   20-fold quotients : {5,2,5}*100
   25-fold quotients : {2,2,10}*80, {10,2,2}*80
   50-fold quotients : {2,2,5}*40, {5,2,2}*40
   125-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 21)(  7, 22)(  8, 23)(  9, 24)( 10, 25)( 11, 16)( 12, 17)( 13, 18)
( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 41)
( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)( 59, 74)
( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)( 82, 97)
( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)( 90, 95)
(106,121)(107,122)(108,123)(109,124)(110,125)(111,116)(112,117)(113,118)
(114,119)(115,120)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)
(137,142)(138,143)(139,144)(140,145)(156,171)(157,172)(158,173)(159,174)
(160,175)(161,166)(162,167)(163,168)(164,169)(165,170)(181,196)(182,197)
(183,198)(184,199)(185,200)(186,191)(187,192)(188,193)(189,194)(190,195)
(206,221)(207,222)(208,223)(209,224)(210,225)(211,216)(212,217)(213,218)
(214,219)(215,220)(231,246)(232,247)(233,248)(234,249)(235,250)(236,241)
(237,242)(238,243)(239,244)(240,245);;
s1 := (  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 11, 21)( 12, 22)( 13, 23)
( 14, 24)( 15, 25)( 26,106)( 27,107)( 28,108)( 29,109)( 30,110)( 31,101)
( 32,102)( 33,103)( 34,104)( 35,105)( 36,121)( 37,122)( 38,123)( 39,124)
( 40,125)( 41,116)( 42,117)( 43,118)( 44,119)( 45,120)( 46,111)( 47,112)
( 48,113)( 49,114)( 50,115)( 51, 81)( 52, 82)( 53, 83)( 54, 84)( 55, 85)
( 56, 76)( 57, 77)( 58, 78)( 59, 79)( 60, 80)( 61, 96)( 62, 97)( 63, 98)
( 64, 99)( 65,100)( 66, 91)( 67, 92)( 68, 93)( 69, 94)( 70, 95)( 71, 86)
( 72, 87)( 73, 88)( 74, 89)( 75, 90)(126,131)(127,132)(128,133)(129,134)
(130,135)(136,146)(137,147)(138,148)(139,149)(140,150)(151,231)(152,232)
(153,233)(154,234)(155,235)(156,226)(157,227)(158,228)(159,229)(160,230)
(161,246)(162,247)(163,248)(164,249)(165,250)(166,241)(167,242)(168,243)
(169,244)(170,245)(171,236)(172,237)(173,238)(174,239)(175,240)(176,206)
(177,207)(178,208)(179,209)(180,210)(181,201)(182,202)(183,203)(184,204)
(185,205)(186,221)(187,222)(188,223)(189,224)(190,225)(191,216)(192,217)
(193,218)(194,219)(195,220)(196,211)(197,212)(198,213)(199,214)(200,215);;
s2 := (  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 31)(  7, 35)(  8, 34)
(  9, 33)( 10, 32)( 11, 36)( 12, 40)( 13, 39)( 14, 38)( 15, 37)( 16, 41)
( 17, 45)( 18, 44)( 19, 43)( 20, 42)( 21, 46)( 22, 50)( 23, 49)( 24, 48)
( 25, 47)( 51,101)( 52,105)( 53,104)( 54,103)( 55,102)( 56,106)( 57,110)
( 58,109)( 59,108)( 60,107)( 61,111)( 62,115)( 63,114)( 64,113)( 65,112)
( 66,116)( 67,120)( 68,119)( 69,118)( 70,117)( 71,121)( 72,125)( 73,124)
( 74,123)( 75,122)( 77, 80)( 78, 79)( 82, 85)( 83, 84)( 87, 90)( 88, 89)
( 92, 95)( 93, 94)( 97,100)( 98, 99)(126,151)(127,155)(128,154)(129,153)
(130,152)(131,156)(132,160)(133,159)(134,158)(135,157)(136,161)(137,165)
(138,164)(139,163)(140,162)(141,166)(142,170)(143,169)(144,168)(145,167)
(146,171)(147,175)(148,174)(149,173)(150,172)(176,226)(177,230)(178,229)
(179,228)(180,227)(181,231)(182,235)(183,234)(184,233)(185,232)(186,236)
(187,240)(188,239)(189,238)(190,237)(191,241)(192,245)(193,244)(194,243)
(195,242)(196,246)(197,250)(198,249)(199,248)(200,247)(202,205)(203,204)
(207,210)(208,209)(212,215)(213,214)(217,220)(218,219)(222,225)(223,224);;
s3 := (  1,127)(  2,126)(  3,130)(  4,129)(  5,128)(  6,132)(  7,131)(  8,135)
(  9,134)( 10,133)( 11,137)( 12,136)( 13,140)( 14,139)( 15,138)( 16,142)
( 17,141)( 18,145)( 19,144)( 20,143)( 21,147)( 22,146)( 23,150)( 24,149)
( 25,148)( 26,227)( 27,226)( 28,230)( 29,229)( 30,228)( 31,232)( 32,231)
( 33,235)( 34,234)( 35,233)( 36,237)( 37,236)( 38,240)( 39,239)( 40,238)
( 41,242)( 42,241)( 43,245)( 44,244)( 45,243)( 46,247)( 47,246)( 48,250)
( 49,249)( 50,248)( 51,202)( 52,201)( 53,205)( 54,204)( 55,203)( 56,207)
( 57,206)( 58,210)( 59,209)( 60,208)( 61,212)( 62,211)( 63,215)( 64,214)
( 65,213)( 66,217)( 67,216)( 68,220)( 69,219)( 70,218)( 71,222)( 72,221)
( 73,225)( 74,224)( 75,223)( 76,177)( 77,176)( 78,180)( 79,179)( 80,178)
( 81,182)( 82,181)( 83,185)( 84,184)( 85,183)( 86,187)( 87,186)( 88,190)
( 89,189)( 90,188)( 91,192)( 92,191)( 93,195)( 94,194)( 95,193)( 96,197)
( 97,196)( 98,200)( 99,199)(100,198)(101,152)(102,151)(103,155)(104,154)
(105,153)(106,157)(107,156)(108,160)(109,159)(110,158)(111,162)(112,161)
(113,165)(114,164)(115,163)(116,167)(117,166)(118,170)(119,169)(120,168)
(121,172)(122,171)(123,175)(124,174)(125,173);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(250)!(  6, 21)(  7, 22)(  8, 23)(  9, 24)( 10, 25)( 11, 16)( 12, 17)
( 13, 18)( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)
( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)
( 59, 74)( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)
( 82, 97)( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)
( 90, 95)(106,121)(107,122)(108,123)(109,124)(110,125)(111,116)(112,117)
(113,118)(114,119)(115,120)(131,146)(132,147)(133,148)(134,149)(135,150)
(136,141)(137,142)(138,143)(139,144)(140,145)(156,171)(157,172)(158,173)
(159,174)(160,175)(161,166)(162,167)(163,168)(164,169)(165,170)(181,196)
(182,197)(183,198)(184,199)(185,200)(186,191)(187,192)(188,193)(189,194)
(190,195)(206,221)(207,222)(208,223)(209,224)(210,225)(211,216)(212,217)
(213,218)(214,219)(215,220)(231,246)(232,247)(233,248)(234,249)(235,250)
(236,241)(237,242)(238,243)(239,244)(240,245);
s1 := Sym(250)!(  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 11, 21)( 12, 22)
( 13, 23)( 14, 24)( 15, 25)( 26,106)( 27,107)( 28,108)( 29,109)( 30,110)
( 31,101)( 32,102)( 33,103)( 34,104)( 35,105)( 36,121)( 37,122)( 38,123)
( 39,124)( 40,125)( 41,116)( 42,117)( 43,118)( 44,119)( 45,120)( 46,111)
( 47,112)( 48,113)( 49,114)( 50,115)( 51, 81)( 52, 82)( 53, 83)( 54, 84)
( 55, 85)( 56, 76)( 57, 77)( 58, 78)( 59, 79)( 60, 80)( 61, 96)( 62, 97)
( 63, 98)( 64, 99)( 65,100)( 66, 91)( 67, 92)( 68, 93)( 69, 94)( 70, 95)
( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)(126,131)(127,132)(128,133)
(129,134)(130,135)(136,146)(137,147)(138,148)(139,149)(140,150)(151,231)
(152,232)(153,233)(154,234)(155,235)(156,226)(157,227)(158,228)(159,229)
(160,230)(161,246)(162,247)(163,248)(164,249)(165,250)(166,241)(167,242)
(168,243)(169,244)(170,245)(171,236)(172,237)(173,238)(174,239)(175,240)
(176,206)(177,207)(178,208)(179,209)(180,210)(181,201)(182,202)(183,203)
(184,204)(185,205)(186,221)(187,222)(188,223)(189,224)(190,225)(191,216)
(192,217)(193,218)(194,219)(195,220)(196,211)(197,212)(198,213)(199,214)
(200,215);
s2 := Sym(250)!(  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 31)(  7, 35)
(  8, 34)(  9, 33)( 10, 32)( 11, 36)( 12, 40)( 13, 39)( 14, 38)( 15, 37)
( 16, 41)( 17, 45)( 18, 44)( 19, 43)( 20, 42)( 21, 46)( 22, 50)( 23, 49)
( 24, 48)( 25, 47)( 51,101)( 52,105)( 53,104)( 54,103)( 55,102)( 56,106)
( 57,110)( 58,109)( 59,108)( 60,107)( 61,111)( 62,115)( 63,114)( 64,113)
( 65,112)( 66,116)( 67,120)( 68,119)( 69,118)( 70,117)( 71,121)( 72,125)
( 73,124)( 74,123)( 75,122)( 77, 80)( 78, 79)( 82, 85)( 83, 84)( 87, 90)
( 88, 89)( 92, 95)( 93, 94)( 97,100)( 98, 99)(126,151)(127,155)(128,154)
(129,153)(130,152)(131,156)(132,160)(133,159)(134,158)(135,157)(136,161)
(137,165)(138,164)(139,163)(140,162)(141,166)(142,170)(143,169)(144,168)
(145,167)(146,171)(147,175)(148,174)(149,173)(150,172)(176,226)(177,230)
(178,229)(179,228)(180,227)(181,231)(182,235)(183,234)(184,233)(185,232)
(186,236)(187,240)(188,239)(189,238)(190,237)(191,241)(192,245)(193,244)
(194,243)(195,242)(196,246)(197,250)(198,249)(199,248)(200,247)(202,205)
(203,204)(207,210)(208,209)(212,215)(213,214)(217,220)(218,219)(222,225)
(223,224);
s3 := Sym(250)!(  1,127)(  2,126)(  3,130)(  4,129)(  5,128)(  6,132)(  7,131)
(  8,135)(  9,134)( 10,133)( 11,137)( 12,136)( 13,140)( 14,139)( 15,138)
( 16,142)( 17,141)( 18,145)( 19,144)( 20,143)( 21,147)( 22,146)( 23,150)
( 24,149)( 25,148)( 26,227)( 27,226)( 28,230)( 29,229)( 30,228)( 31,232)
( 32,231)( 33,235)( 34,234)( 35,233)( 36,237)( 37,236)( 38,240)( 39,239)
( 40,238)( 41,242)( 42,241)( 43,245)( 44,244)( 45,243)( 46,247)( 47,246)
( 48,250)( 49,249)( 50,248)( 51,202)( 52,201)( 53,205)( 54,204)( 55,203)
( 56,207)( 57,206)( 58,210)( 59,209)( 60,208)( 61,212)( 62,211)( 63,215)
( 64,214)( 65,213)( 66,217)( 67,216)( 68,220)( 69,219)( 70,218)( 71,222)
( 72,221)( 73,225)( 74,224)( 75,223)( 76,177)( 77,176)( 78,180)( 79,179)
( 80,178)( 81,182)( 82,181)( 83,185)( 84,184)( 85,183)( 86,187)( 87,186)
( 88,190)( 89,189)( 90,188)( 91,192)( 92,191)( 93,195)( 94,194)( 95,193)
( 96,197)( 97,196)( 98,200)( 99,199)(100,198)(101,152)(102,151)(103,155)
(104,154)(105,153)(106,157)(107,156)(108,160)(109,159)(110,158)(111,162)
(112,161)(113,165)(114,164)(115,163)(116,167)(117,166)(118,170)(119,169)
(120,168)(121,172)(122,171)(123,175)(124,174)(125,173);
poly := sub<Sym(250)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope