Polytope of Type {10,10,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10,10}*2000g
if this polytope has a name.
Group : SmallGroup(2000,946)
Rank : 4
Schlafli Type : {10,10,10}
Number of vertices, edges, etc : 10, 50, 50, 10
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,10,10}*1000b
   5-fold quotients : {10,2,10}*400, {10,10,2}*400c
   10-fold quotients : {5,2,10}*200, {5,10,2}*200, {10,2,5}*200
   20-fold quotients : {5,2,5}*100
   25-fold quotients : {2,2,10}*80, {10,2,2}*80
   50-fold quotients : {2,2,5}*40, {5,2,2}*40
   125-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 21)(  7, 22)(  8, 23)(  9, 24)( 10, 25)( 11, 16)( 12, 17)( 13, 18)
( 14, 19)( 15, 20)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,121)
( 32,122)( 33,123)( 34,124)( 35,125)( 36,116)( 37,117)( 38,118)( 39,119)
( 40,120)( 41,111)( 42,112)( 43,113)( 44,114)( 45,115)( 46,106)( 47,107)
( 48,108)( 49,109)( 50,110)( 51, 76)( 52, 77)( 53, 78)( 54, 79)( 55, 80)
( 56, 96)( 57, 97)( 58, 98)( 59, 99)( 60,100)( 61, 91)( 62, 92)( 63, 93)
( 64, 94)( 65, 95)( 66, 86)( 67, 87)( 68, 88)( 69, 89)( 70, 90)( 71, 81)
( 72, 82)( 73, 83)( 74, 84)( 75, 85)(131,146)(132,147)(133,148)(134,149)
(135,150)(136,141)(137,142)(138,143)(139,144)(140,145)(151,226)(152,227)
(153,228)(154,229)(155,230)(156,246)(157,247)(158,248)(159,249)(160,250)
(161,241)(162,242)(163,243)(164,244)(165,245)(166,236)(167,237)(168,238)
(169,239)(170,240)(171,231)(172,232)(173,233)(174,234)(175,235)(176,201)
(177,202)(178,203)(179,204)(180,205)(181,221)(182,222)(183,223)(184,224)
(185,225)(186,216)(187,217)(188,218)(189,219)(190,220)(191,211)(192,212)
(193,213)(194,214)(195,215)(196,206)(197,207)(198,208)(199,209)(200,210);;
s1 := (  1,156)(  2,157)(  3,158)(  4,159)(  5,160)(  6,151)(  7,152)(  8,153)
(  9,154)( 10,155)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)( 16,166)
( 17,167)( 18,168)( 19,169)( 20,170)( 21,161)( 22,162)( 23,163)( 24,164)
( 25,165)( 26,131)( 27,132)( 28,133)( 29,134)( 30,135)( 31,126)( 32,127)
( 33,128)( 34,129)( 35,130)( 36,146)( 37,147)( 38,148)( 39,149)( 40,150)
( 41,141)( 42,142)( 43,143)( 44,144)( 45,145)( 46,136)( 47,137)( 48,138)
( 49,139)( 50,140)( 51,231)( 52,232)( 53,233)( 54,234)( 55,235)( 56,226)
( 57,227)( 58,228)( 59,229)( 60,230)( 61,246)( 62,247)( 63,248)( 64,249)
( 65,250)( 66,241)( 67,242)( 68,243)( 69,244)( 70,245)( 71,236)( 72,237)
( 73,238)( 74,239)( 75,240)( 76,206)( 77,207)( 78,208)( 79,209)( 80,210)
( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,221)( 87,222)( 88,223)
( 89,224)( 90,225)( 91,216)( 92,217)( 93,218)( 94,219)( 95,220)( 96,211)
( 97,212)( 98,213)( 99,214)(100,215)(101,181)(102,182)(103,183)(104,184)
(105,185)(106,176)(107,177)(108,178)(109,179)(110,180)(111,196)(112,197)
(113,198)(114,199)(115,200)(116,191)(117,192)(118,193)(119,194)(120,195)
(121,186)(122,187)(123,188)(124,189)(125,190);;
s2 := (  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)
( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)( 61, 66)
( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)( 82,100)
( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)( 90, 92)
(102,105)(103,104)(106,121)(107,125)(108,124)(109,123)(110,122)(111,116)
(112,120)(113,119)(114,118)(115,117)(127,130)(128,129)(131,146)(132,150)
(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)(140,142)
(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)(160,172)(161,166)
(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)(181,196)(182,200)
(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)(189,193)(190,192)
(202,205)(203,204)(206,221)(207,225)(208,224)(209,223)(210,222)(211,216)
(212,220)(213,219)(214,218)(215,217)(227,230)(228,229)(231,246)(232,250)
(233,249)(234,248)(235,247)(236,241)(237,245)(238,244)(239,243)(240,242);;
s3 := (  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)( 18, 20)
( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)( 38, 40)
( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)( 58, 60)
( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)( 78, 80)
( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)( 98,100)
(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)(118,120)
(121,122)(123,125)(126,127)(128,130)(131,132)(133,135)(136,137)(138,140)
(141,142)(143,145)(146,147)(148,150)(151,152)(153,155)(156,157)(158,160)
(161,162)(163,165)(166,167)(168,170)(171,172)(173,175)(176,177)(178,180)
(181,182)(183,185)(186,187)(188,190)(191,192)(193,195)(196,197)(198,200)
(201,202)(203,205)(206,207)(208,210)(211,212)(213,215)(216,217)(218,220)
(221,222)(223,225)(226,227)(228,230)(231,232)(233,235)(236,237)(238,240)
(241,242)(243,245)(246,247)(248,250);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(250)!(  6, 21)(  7, 22)(  8, 23)(  9, 24)( 10, 25)( 11, 16)( 12, 17)
( 13, 18)( 14, 19)( 15, 20)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)
( 31,121)( 32,122)( 33,123)( 34,124)( 35,125)( 36,116)( 37,117)( 38,118)
( 39,119)( 40,120)( 41,111)( 42,112)( 43,113)( 44,114)( 45,115)( 46,106)
( 47,107)( 48,108)( 49,109)( 50,110)( 51, 76)( 52, 77)( 53, 78)( 54, 79)
( 55, 80)( 56, 96)( 57, 97)( 58, 98)( 59, 99)( 60,100)( 61, 91)( 62, 92)
( 63, 93)( 64, 94)( 65, 95)( 66, 86)( 67, 87)( 68, 88)( 69, 89)( 70, 90)
( 71, 81)( 72, 82)( 73, 83)( 74, 84)( 75, 85)(131,146)(132,147)(133,148)
(134,149)(135,150)(136,141)(137,142)(138,143)(139,144)(140,145)(151,226)
(152,227)(153,228)(154,229)(155,230)(156,246)(157,247)(158,248)(159,249)
(160,250)(161,241)(162,242)(163,243)(164,244)(165,245)(166,236)(167,237)
(168,238)(169,239)(170,240)(171,231)(172,232)(173,233)(174,234)(175,235)
(176,201)(177,202)(178,203)(179,204)(180,205)(181,221)(182,222)(183,223)
(184,224)(185,225)(186,216)(187,217)(188,218)(189,219)(190,220)(191,211)
(192,212)(193,213)(194,214)(195,215)(196,206)(197,207)(198,208)(199,209)
(200,210);
s1 := Sym(250)!(  1,156)(  2,157)(  3,158)(  4,159)(  5,160)(  6,151)(  7,152)
(  8,153)(  9,154)( 10,155)( 11,171)( 12,172)( 13,173)( 14,174)( 15,175)
( 16,166)( 17,167)( 18,168)( 19,169)( 20,170)( 21,161)( 22,162)( 23,163)
( 24,164)( 25,165)( 26,131)( 27,132)( 28,133)( 29,134)( 30,135)( 31,126)
( 32,127)( 33,128)( 34,129)( 35,130)( 36,146)( 37,147)( 38,148)( 39,149)
( 40,150)( 41,141)( 42,142)( 43,143)( 44,144)( 45,145)( 46,136)( 47,137)
( 48,138)( 49,139)( 50,140)( 51,231)( 52,232)( 53,233)( 54,234)( 55,235)
( 56,226)( 57,227)( 58,228)( 59,229)( 60,230)( 61,246)( 62,247)( 63,248)
( 64,249)( 65,250)( 66,241)( 67,242)( 68,243)( 69,244)( 70,245)( 71,236)
( 72,237)( 73,238)( 74,239)( 75,240)( 76,206)( 77,207)( 78,208)( 79,209)
( 80,210)( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,221)( 87,222)
( 88,223)( 89,224)( 90,225)( 91,216)( 92,217)( 93,218)( 94,219)( 95,220)
( 96,211)( 97,212)( 98,213)( 99,214)(100,215)(101,181)(102,182)(103,183)
(104,184)(105,185)(106,176)(107,177)(108,178)(109,179)(110,180)(111,196)
(112,197)(113,198)(114,199)(115,200)(116,191)(117,192)(118,193)(119,194)
(120,195)(121,186)(122,187)(123,188)(124,189)(125,190);
s2 := Sym(250)!(  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)
( 32, 50)( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)
( 40, 42)( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)
( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)
( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)
( 90, 92)(102,105)(103,104)(106,121)(107,125)(108,124)(109,123)(110,122)
(111,116)(112,120)(113,119)(114,118)(115,117)(127,130)(128,129)(131,146)
(132,150)(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)
(140,142)(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)(160,172)
(161,166)(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)(181,196)
(182,200)(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)(189,193)
(190,192)(202,205)(203,204)(206,221)(207,225)(208,224)(209,223)(210,222)
(211,216)(212,220)(213,219)(214,218)(215,217)(227,230)(228,229)(231,246)
(232,250)(233,249)(234,248)(235,247)(236,241)(237,245)(238,244)(239,243)
(240,242);
s3 := Sym(250)!(  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)
( 18, 20)( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)
( 38, 40)( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)
( 58, 60)( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)
( 78, 80)( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)
( 98,100)(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)
(118,120)(121,122)(123,125)(126,127)(128,130)(131,132)(133,135)(136,137)
(138,140)(141,142)(143,145)(146,147)(148,150)(151,152)(153,155)(156,157)
(158,160)(161,162)(163,165)(166,167)(168,170)(171,172)(173,175)(176,177)
(178,180)(181,182)(183,185)(186,187)(188,190)(191,192)(193,195)(196,197)
(198,200)(201,202)(203,205)(206,207)(208,210)(211,212)(213,215)(216,217)
(218,220)(221,222)(223,225)(226,227)(228,230)(231,232)(233,235)(236,237)
(238,240)(241,242)(243,245)(246,247)(248,250);
poly := sub<Sym(250)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope