include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,5,2,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,5,2,10}*2000
if this polytope has a name.
Group : SmallGroup(2000,946)
Rank : 5
Schlafli Type : {10,5,2,10}
Number of vertices, edges, etc : 10, 25, 5, 10, 10
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,5,2,5}*1000
5-fold quotients : {2,5,2,10}*400, {10,5,2,2}*400
10-fold quotients : {2,5,2,5}*200
25-fold quotients : {2,5,2,2}*80
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 5)( 7, 8)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25);;
s1 := ( 1, 4)( 2,10)( 3, 7)( 5,12)( 6,18)( 8,20)( 9,14)(11,16)(15,24)(17,21)
(19,22)(23,25);;
s2 := ( 1, 2)( 3, 6)( 4, 8)( 5, 7)(10,15)(11,14)(12,17)(13,16)(18,19)(20,23)
(21,22)(24,25);;
s3 := (28,29)(30,31)(32,33)(34,35);;
s4 := (26,30)(27,28)(29,34)(31,32)(33,35);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(35)!( 4, 5)( 7, 8)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25);
s1 := Sym(35)!( 1, 4)( 2,10)( 3, 7)( 5,12)( 6,18)( 8,20)( 9,14)(11,16)(15,24)
(17,21)(19,22)(23,25);
s2 := Sym(35)!( 1, 2)( 3, 6)( 4, 8)( 5, 7)(10,15)(11,14)(12,17)(13,16)(18,19)
(20,23)(21,22)(24,25);
s3 := Sym(35)!(28,29)(30,31)(32,33)(34,35);
s4 := Sym(35)!(26,30)(27,28)(29,34)(31,32)(33,35);
poly := sub<Sym(35)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope