include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,2,5,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,5,10}*2000
if this polytope has a name.
Group : SmallGroup(2000,946)
Rank : 5
Schlafli Type : {10,2,5,10}
Number of vertices, edges, etc : 10, 10, 5, 25, 10
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,5,10}*1000
5-fold quotients : {2,2,5,10}*400, {10,2,5,2}*400
10-fold quotients : {5,2,5,2}*200
25-fold quotients : {2,2,5,2}*80
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (12,13)(14,15)(16,19)(17,21)(18,20)(22,23)(24,29)(25,28)(26,31)(27,30)
(32,35)(33,34);;
s3 := (11,17)(12,14)(13,24)(15,26)(16,20)(18,22)(19,28)(21,32)(23,27)(25,30)
(29,34)(31,33);;
s4 := (14,15)(17,18)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(35)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(35)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(35)!(12,13)(14,15)(16,19)(17,21)(18,20)(22,23)(24,29)(25,28)(26,31)
(27,30)(32,35)(33,34);
s3 := Sym(35)!(11,17)(12,14)(13,24)(15,26)(16,20)(18,22)(19,28)(21,32)(23,27)
(25,30)(29,34)(31,33);
s4 := Sym(35)!(14,15)(17,18)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)
(34,35);
poly := sub<Sym(35)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope