include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,7,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,7,2,2}*224
if this polytope has a name.
Group : SmallGroup(224,196)
Rank : 6
Schlafli Type : {2,2,7,2,2}
Number of vertices, edges, etc : 2, 2, 7, 7, 2, 2
Order of s0s1s2s3s4s5 : 14
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,7,2,2,2} of size 448
{2,2,7,2,2,3} of size 672
{2,2,7,2,2,4} of size 896
{2,2,7,2,2,5} of size 1120
{2,2,7,2,2,6} of size 1344
{2,2,7,2,2,7} of size 1568
{2,2,7,2,2,8} of size 1792
Vertex Figure Of :
{2,2,2,7,2,2} of size 448
{3,2,2,7,2,2} of size 672
{4,2,2,7,2,2} of size 896
{5,2,2,7,2,2} of size 1120
{6,2,2,7,2,2} of size 1344
{7,2,2,7,2,2} of size 1568
{8,2,2,7,2,2} of size 1792
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,2,7,2,4}*448, {4,2,7,2,2}*448, {2,2,14,2,2}*448
3-fold covers : {2,2,7,2,6}*672, {6,2,7,2,2}*672, {2,2,21,2,2}*672
4-fold covers : {4,2,7,2,4}*896, {2,2,7,2,8}*896, {8,2,7,2,2}*896, {2,2,28,2,2}*896, {2,2,14,2,4}*896, {2,2,14,4,2}*896, {2,4,14,2,2}*896, {4,2,14,2,2}*896
5-fold covers : {2,2,7,2,10}*1120, {10,2,7,2,2}*1120, {2,2,35,2,2}*1120
6-fold covers : {2,2,7,2,12}*1344, {12,2,7,2,2}*1344, {4,2,7,2,6}*1344, {6,2,7,2,4}*1344, {2,2,21,2,4}*1344, {4,2,21,2,2}*1344, {2,2,14,2,6}*1344, {2,2,14,6,2}*1344, {2,6,14,2,2}*1344, {6,2,14,2,2}*1344, {2,2,42,2,2}*1344
7-fold covers : {2,2,49,2,2}*1568, {2,2,7,2,14}*1568, {2,2,7,14,2}*1568, {2,14,7,2,2}*1568, {14,2,7,2,2}*1568
8-fold covers : {4,2,7,2,8}*1792, {8,2,7,2,4}*1792, {2,2,7,2,16}*1792, {16,2,7,2,2}*1792, {2,2,14,4,4}*1792, {4,4,14,2,2}*1792, {2,2,28,4,2}*1792, {2,4,28,2,2}*1792, {2,4,14,2,4}*1792, {4,2,14,2,4}*1792, {4,2,14,4,2}*1792, {2,4,14,4,2}*1792, {2,2,28,2,4}*1792, {4,2,28,2,2}*1792, {2,2,14,2,8}*1792, {2,2,14,8,2}*1792, {2,8,14,2,2}*1792, {8,2,14,2,2}*1792, {2,2,56,2,2}*1792
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8, 9)(10,11);;
s3 := ( 5, 6)( 7, 8)( 9,10);;
s4 := (12,13);;
s5 := (14,15);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(15)!(1,2);
s1 := Sym(15)!(3,4);
s2 := Sym(15)!( 6, 7)( 8, 9)(10,11);
s3 := Sym(15)!( 5, 6)( 7, 8)( 9,10);
s4 := Sym(15)!(12,13);
s5 := Sym(15)!(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope