Polytope of Type {29,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {29,2,2}*232
if this polytope has a name.
Group : SmallGroup(232,13)
Rank : 4
Schlafli Type : {29,2,2}
Number of vertices, edges, etc : 29, 29, 2, 2
Order of s0s1s2s3 : 58
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {29,2,2,2} of size 464
   {29,2,2,3} of size 696
   {29,2,2,4} of size 928
   {29,2,2,5} of size 1160
   {29,2,2,6} of size 1392
   {29,2,2,7} of size 1624
   {29,2,2,8} of size 1856
Vertex Figure Of :
   {2,29,2,2} of size 464
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {29,2,4}*464, {58,2,2}*464
   3-fold covers : {29,2,6}*696, {87,2,2}*696
   4-fold covers : {29,2,8}*928, {116,2,2}*928, {58,2,4}*928, {58,4,2}*928
   5-fold covers : {29,2,10}*1160, {145,2,2}*1160
   6-fold covers : {29,2,12}*1392, {87,2,4}*1392, {58,2,6}*1392, {58,6,2}*1392, {174,2,2}*1392
   7-fold covers : {29,2,14}*1624, {203,2,2}*1624
   8-fold covers : {29,2,16}*1856, {58,4,4}*1856, {116,4,2}*1856, {116,2,4}*1856, {58,2,8}*1856, {58,8,2}*1856, {232,2,2}*1856
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28);;
s2 := (30,31);;
s3 := (32,33);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)
(20,21)(22,23)(24,25)(26,27)(28,29);
s1 := Sym(33)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28);
s2 := Sym(33)!(30,31);
s3 := Sym(33)!(32,33);
poly := sub<Sym(33)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope