include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {232,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {232,2,2}*1856
if this polytope has a name.
Group : SmallGroup(1856,1319)
Rank : 4
Schlafli Type : {232,2,2}
Number of vertices, edges, etc : 232, 232, 2, 2
Order of s0s1s2s3 : 232
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {116,2,2}*928
4-fold quotients : {58,2,2}*464
8-fold quotients : {29,2,2}*232
29-fold quotients : {8,2,2}*64
58-fold quotients : {4,2,2}*32
116-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 29)( 3, 28)( 4, 27)( 5, 26)( 6, 25)( 7, 24)( 8, 23)( 9, 22)
( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 31, 58)( 32, 57)
( 33, 56)( 34, 55)( 35, 54)( 36, 53)( 37, 52)( 38, 51)( 39, 50)( 40, 49)
( 41, 48)( 42, 47)( 43, 46)( 44, 45)( 59, 88)( 60,116)( 61,115)( 62,114)
( 63,113)( 64,112)( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)( 70,106)
( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)( 78, 98)
( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)
( 87, 89)(117,175)(118,203)(119,202)(120,201)(121,200)(122,199)(123,198)
(124,197)(125,196)(126,195)(127,194)(128,193)(129,192)(130,191)(131,190)
(132,189)(133,188)(134,187)(135,186)(136,185)(137,184)(138,183)(139,182)
(140,181)(141,180)(142,179)(143,178)(144,177)(145,176)(146,204)(147,232)
(148,231)(149,230)(150,229)(151,228)(152,227)(153,226)(154,225)(155,224)
(156,223)(157,222)(158,221)(159,220)(160,219)(161,218)(162,217)(163,216)
(164,215)(165,214)(166,213)(167,212)(168,211)(169,210)(170,209)(171,208)
(172,207)(173,206)(174,205);;
s1 := ( 1,118)( 2,117)( 3,145)( 4,144)( 5,143)( 6,142)( 7,141)( 8,140)
( 9,139)( 10,138)( 11,137)( 12,136)( 13,135)( 14,134)( 15,133)( 16,132)
( 17,131)( 18,130)( 19,129)( 20,128)( 21,127)( 22,126)( 23,125)( 24,124)
( 25,123)( 26,122)( 27,121)( 28,120)( 29,119)( 30,147)( 31,146)( 32,174)
( 33,173)( 34,172)( 35,171)( 36,170)( 37,169)( 38,168)( 39,167)( 40,166)
( 41,165)( 42,164)( 43,163)( 44,162)( 45,161)( 46,160)( 47,159)( 48,158)
( 49,157)( 50,156)( 51,155)( 52,154)( 53,153)( 54,152)( 55,151)( 56,150)
( 57,149)( 58,148)( 59,205)( 60,204)( 61,232)( 62,231)( 63,230)( 64,229)
( 65,228)( 66,227)( 67,226)( 68,225)( 69,224)( 70,223)( 71,222)( 72,221)
( 73,220)( 74,219)( 75,218)( 76,217)( 77,216)( 78,215)( 79,214)( 80,213)
( 81,212)( 82,211)( 83,210)( 84,209)( 85,208)( 86,207)( 87,206)( 88,176)
( 89,175)( 90,203)( 91,202)( 92,201)( 93,200)( 94,199)( 95,198)( 96,197)
( 97,196)( 98,195)( 99,194)(100,193)(101,192)(102,191)(103,190)(104,189)
(105,188)(106,187)(107,186)(108,185)(109,184)(110,183)(111,182)(112,181)
(113,180)(114,179)(115,178)(116,177);;
s2 := (233,234);;
s3 := (235,236);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(236)!( 2, 29)( 3, 28)( 4, 27)( 5, 26)( 6, 25)( 7, 24)( 8, 23)
( 9, 22)( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 31, 58)
( 32, 57)( 33, 56)( 34, 55)( 35, 54)( 36, 53)( 37, 52)( 38, 51)( 39, 50)
( 40, 49)( 41, 48)( 42, 47)( 43, 46)( 44, 45)( 59, 88)( 60,116)( 61,115)
( 62,114)( 63,113)( 64,112)( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)
( 70,106)( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)
( 78, 98)( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)
( 86, 90)( 87, 89)(117,175)(118,203)(119,202)(120,201)(121,200)(122,199)
(123,198)(124,197)(125,196)(126,195)(127,194)(128,193)(129,192)(130,191)
(131,190)(132,189)(133,188)(134,187)(135,186)(136,185)(137,184)(138,183)
(139,182)(140,181)(141,180)(142,179)(143,178)(144,177)(145,176)(146,204)
(147,232)(148,231)(149,230)(150,229)(151,228)(152,227)(153,226)(154,225)
(155,224)(156,223)(157,222)(158,221)(159,220)(160,219)(161,218)(162,217)
(163,216)(164,215)(165,214)(166,213)(167,212)(168,211)(169,210)(170,209)
(171,208)(172,207)(173,206)(174,205);
s1 := Sym(236)!( 1,118)( 2,117)( 3,145)( 4,144)( 5,143)( 6,142)( 7,141)
( 8,140)( 9,139)( 10,138)( 11,137)( 12,136)( 13,135)( 14,134)( 15,133)
( 16,132)( 17,131)( 18,130)( 19,129)( 20,128)( 21,127)( 22,126)( 23,125)
( 24,124)( 25,123)( 26,122)( 27,121)( 28,120)( 29,119)( 30,147)( 31,146)
( 32,174)( 33,173)( 34,172)( 35,171)( 36,170)( 37,169)( 38,168)( 39,167)
( 40,166)( 41,165)( 42,164)( 43,163)( 44,162)( 45,161)( 46,160)( 47,159)
( 48,158)( 49,157)( 50,156)( 51,155)( 52,154)( 53,153)( 54,152)( 55,151)
( 56,150)( 57,149)( 58,148)( 59,205)( 60,204)( 61,232)( 62,231)( 63,230)
( 64,229)( 65,228)( 66,227)( 67,226)( 68,225)( 69,224)( 70,223)( 71,222)
( 72,221)( 73,220)( 74,219)( 75,218)( 76,217)( 77,216)( 78,215)( 79,214)
( 80,213)( 81,212)( 82,211)( 83,210)( 84,209)( 85,208)( 86,207)( 87,206)
( 88,176)( 89,175)( 90,203)( 91,202)( 92,201)( 93,200)( 94,199)( 95,198)
( 96,197)( 97,196)( 98,195)( 99,194)(100,193)(101,192)(102,191)(103,190)
(104,189)(105,188)(106,187)(107,186)(108,185)(109,184)(110,183)(111,182)
(112,181)(113,180)(114,179)(115,178)(116,177);
s2 := Sym(236)!(233,234);
s3 := Sym(236)!(235,236);
poly := sub<Sym(236)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope