Polytope of Type {5,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,4,2}*240
if this polytope has a name.
Group : SmallGroup(240,189)
Rank : 4
Schlafli Type : {5,4,2}
Number of vertices, edges, etc : 15, 30, 12, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,4,2,2} of size 480
   {5,4,2,3} of size 720
   {5,4,2,4} of size 960
   {5,4,2,5} of size 1200
   {5,4,2,6} of size 1440
   {5,4,2,7} of size 1680
   {5,4,2,8} of size 1920
Vertex Figure Of :
   {2,5,4,2} of size 480
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,4,4}*480, {5,4,2}*480, {10,4,2}*480a, {10,4,2}*480b
   3-fold covers : {5,4,6}*720
   4-fold covers : {5,4,8}*960, {5,8,2}*960, {5,4,4}*960, {10,4,4}*960a, {10,4,4}*960b, {10,4,2}*960a, {10,4,2}*960b, {10,4,2}*960c
   5-fold covers : {5,4,10}*1200
   6-fold covers : {5,4,12}*1440, {5,4,6}*1440, {10,4,6}*1440a, {10,4,6}*1440b, {10,12,2}*1440, {15,4,2}*1440
   7-fold covers : {5,4,14}*1680
   8-fold covers : {5,4,16}*1920, {10,4,4}*1920a, {10,4,4}*1920b, {5,4,8}*1920, {10,4,8}*1920a, {10,4,8}*1920b, {10,8,2}*1920a, {10,8,2}*1920b, {10,4,4}*1920c, {10,4,2}*1920, {20,4,2}*1920a, {20,4,2}*1920b, {5,8,4}*1920, {20,4,2}*1920c, {20,4,2}*1920d, {10,8,2}*1920c, {10,8,2}*1920d
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (2,3);;
s3 := (6,7);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(7)!(2,3)(4,5);
s1 := Sym(7)!(1,2)(3,4);
s2 := Sym(7)!(2,3);
s3 := Sym(7)!(6,7);
poly := sub<Sym(7)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 >; 
 

to this polytope