Polytope of Type {10,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,4,4}*960b
if this polytope has a name.
Group : SmallGroup(960,10882)
Rank : 4
Schlafli Type : {10,4,4}
Number of vertices, edges, etc : 30, 60, 24, 4
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,4,4,2} of size 1920
Vertex Figure Of :
   {2,10,4,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,4,4}*480, {10,4,2}*480b
   4-fold quotients : {5,4,2}*240
Covers (Minimal Covers in Boldface) :
   2-fold covers : {10,4,8}*1920b, {10,4,4}*1920c
Permutation Representation (GAP) :
s0 := ( 6, 7)( 8, 9)(10,11);;
s1 := (5,6)(7,8);;
s2 := (3,4)(6,7);;
s3 := (1,3)(2,4);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!( 6, 7)( 8, 9)(10,11);
s1 := Sym(11)!(5,6)(7,8);
s2 := Sym(11)!(3,4)(6,7);
s3 := Sym(11)!(1,3)(2,4);
poly := sub<Sym(11)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2 >; 
 
References : None.
to this polytope