include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,10,2}*240b
if this polytope has a name.
Group : SmallGroup(240,190)
Rank : 4
Schlafli Type : {3,10,2}
Number of vertices, edges, etc : 6, 30, 20, 2
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,10,2,2} of size 480
{3,10,2,3} of size 720
{3,10,2,4} of size 960
{3,10,2,5} of size 1200
{3,10,2,6} of size 1440
{3,10,2,7} of size 1680
{3,10,2,8} of size 1920
Vertex Figure Of :
{2,3,10,2} of size 480
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,5,2}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,10,4}*480, {3,10,2}*480, {6,10,2}*480c, {6,10,2}*480d
3-fold covers : {3,10,6}*720
4-fold covers : {3,10,8}*960, {3,10,4}*960, {6,10,4}*960b, {6,10,4}*960c, {6,20,2}*960a, {6,20,2}*960b, {3,20,2}*960, {6,10,2}*960c
5-fold covers : {3,10,10}*1200
6-fold covers : {3,10,12}*1440, {3,10,6}*1440, {6,10,6}*1440e, {6,10,6}*1440f, {3,10,2}*1440b, {3,30,2}*1440, {6,30,2}*1440a
7-fold covers : {3,10,14}*1680
8-fold covers : {3,10,16}*1920, {6,20,4}*1920d, {6,20,4}*1920e, {3,10,8}*1920, {6,10,8}*1920b, {6,10,8}*1920c, {6,40,2}*1920d, {6,40,2}*1920e, {6,10,4}*1920c, {6,20,2}*1920c, {12,10,2}*1920c, {3,20,4}*1920, {6,20,2}*1920e, {12,10,2}*1920e, {6,10,2}*1920b
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);;
s1 := ( 1, 2)( 3,11)( 4, 5)( 6,12)( 7, 9)( 8,10);;
s2 := ( 2, 9)( 4,12)( 5, 7)( 6, 8);;
s3 := (13,14);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);
s1 := Sym(14)!( 1, 2)( 3,11)( 4, 5)( 6,12)( 7, 9)( 8,10);
s2 := Sym(14)!( 2, 9)( 4,12)( 5, 7)( 6, 8);
s3 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 >;
to this polytope