Polytopes for Group SmallGroup(240,190)

This page is part of the Atlas of Small Regular Polytopes
Nondegenerate Polytopes :
  1. {3,10}*240
  2. {5,6}*240b
  3. {5,10}*240
  4. {6,5}*240b
  5. {6,10}*240c
  6. {6,10}*240d
  7. {6,10}*240e
  8. {6,10}*240f
  9. {10,3}*240
  10. {10,5}*240
  11. {10,6}*240c
  12. {10,6}*240d
  13. {10,6}*240e
  14. {10,6}*240f
  15. {10,10}*240a
  16. {10,10}*240b
  17. {10,10}*240c
  18. {10,10}*240d


Degenerate Polytopes :
  1. {2,2,3,5}*240
  2. {2,2,5,3}*240
  3. {2,2,5,5}*240
  4. {2,3,5}*240
  5. {2,3,5,2}*240
  6. {2,3,10}*240a
  7. {2,3,10}*240b
  8. {2,5,3}*240
  9. {2,5,3,2}*240
  10. {2,5,5}*240
  11. {2,5,5,2}*240
  12. {2,5,6}*240b
  13. {2,5,6}*240c
  14. {2,5,10}*240a
  15. {2,5,10}*240b
  16. {2,6,5}*240b
  17. {2,6,5}*240c
  18. {2,10,3}*240a
  19. {2,10,3}*240b
  20. {2,10,5}*240a
  21. {2,10,5}*240b
  22. {3,5,2}*240
  23. {3,5,2,2}*240
  24. {3,10,2}*240a
  25. {3,10,2}*240b
  26. {5,3,2}*240
  27. {5,3,2,2}*240
  28. {5,5,2}*240
  29. {5,5,2,2}*240
  30. {5,6,2}*240b
  31. {5,6,2}*240c
  32. {5,10,2}*240a
  33. {5,10,2}*240b
  34. {6,5,2}*240b
  35. {6,5,2}*240c
  36. {10,3,2}*240a
  37. {10,3,2}*240b
  38. {10,5,2}*240a
  39. {10,5,2}*240b



Other Groups of Order 240 :
  1. SmallGroup(240,68) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(240,136) 2 nondegenerate polytopes and 2 degenerate polytopes.
  3. SmallGroup(240,137) 2 nondegenerate polytopes and 2 degenerate polytopes.
  4. SmallGroup(240,177) 0 nondegenerate polytopes and 2 degenerate polytopes.
  5. SmallGroup(240,179) 2 nondegenerate polytopes and 2 degenerate polytopes.
  6. SmallGroup(240,189) 24 nondegenerate polytopes and 16 degenerate polytopes.
  7. SmallGroup(240,190) 18 nondegenerate polytopes and 39 degenerate polytopes (this group).
  8. SmallGroup(240,194) 4 nondegenerate polytopes and 6 degenerate polytopes.
  9. SmallGroup(240,197) 6 nondegenerate polytopes and 4 degenerate polytopes.
  10. SmallGroup(240,202) 0 nondegenerate polytopes and 30 degenerate polytopes.
  11. SmallGroup(240,207) 0 nondegenerate polytopes and 7 degenerate polytopes.