Polytope of Type {5,2,3,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,3,2,2}*240
if this polytope has a name.
Group : SmallGroup(240,202)
Rank : 6
Schlafli Type : {5,2,3,2,2}
Number of vertices, edges, etc : 5, 5, 3, 3, 2, 2
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,2,3,2,2,2} of size 480
   {5,2,3,2,2,3} of size 720
   {5,2,3,2,2,4} of size 960
   {5,2,3,2,2,5} of size 1200
   {5,2,3,2,2,6} of size 1440
   {5,2,3,2,2,7} of size 1680
   {5,2,3,2,2,8} of size 1920
Vertex Figure Of :
   {2,5,2,3,2,2} of size 480
   {3,5,2,3,2,2} of size 1440
   {5,5,2,3,2,2} of size 1440
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,2,3,2,4}*480, {5,2,6,2,2}*480, {10,2,3,2,2}*480
   3-fold covers : {5,2,9,2,2}*720, {5,2,3,2,6}*720, {5,2,3,6,2}*720, {15,2,3,2,2}*720
   4-fold covers : {5,2,3,2,8}*960, {5,2,12,2,2}*960, {20,2,3,2,2}*960, {5,2,6,2,4}*960, {5,2,6,4,2}*960a, {10,2,3,2,4}*960, {5,2,3,4,2}*960, {10,2,6,2,2}*960
   5-fold covers : {25,2,3,2,2}*1200, {5,2,3,2,10}*1200, {5,2,15,2,2}*1200
   6-fold covers : {5,2,9,2,4}*1440, {5,2,18,2,2}*1440, {10,2,9,2,2}*1440, {5,2,3,2,12}*1440, {5,2,3,6,4}*1440, {15,2,3,2,4}*1440, {5,2,6,2,6}*1440, {5,2,6,6,2}*1440a, {5,2,6,6,2}*1440c, {10,2,3,2,6}*1440, {10,2,3,6,2}*1440, {10,6,3,2,2}*1440, {15,2,6,2,2}*1440, {30,2,3,2,2}*1440
   7-fold covers : {5,2,3,2,14}*1680, {5,2,21,2,2}*1680, {35,2,3,2,2}*1680
   8-fold covers : {5,2,3,2,16}*1920, {5,2,6,4,4}*1920, {5,2,12,4,2}*1920a, {5,2,12,2,4}*1920, {20,2,3,2,4}*1920, {5,2,6,2,8}*1920, {5,2,6,8,2}*1920, {10,2,3,2,8}*1920, {5,2,24,2,2}*1920, {40,2,3,2,2}*1920, {10,2,6,2,4}*1920, {10,2,6,4,2}*1920a, {10,4,6,2,2}*1920, {10,2,12,2,2}*1920, {20,2,6,2,2}*1920, {5,2,3,4,4}*1920b, {5,2,3,8,2}*1920, {5,2,6,4,2}*1920, {10,2,3,4,2}*1920, {10,4,3,2,2}*1920
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (7,8);;
s3 := (6,7);;
s4 := ( 9,10);;
s5 := (11,12);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!(2,3)(4,5);
s1 := Sym(12)!(1,2)(3,4);
s2 := Sym(12)!(7,8);
s3 := Sym(12)!(6,7);
s4 := Sym(12)!( 9,10);
s5 := Sym(12)!(11,12);
poly := sub<Sym(12)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope