include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,3,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,3,6,4}*1440
if this polytope has a name.
Group : SmallGroup(1440,5358)
Rank : 6
Schlafli Type : {5,2,3,6,4}
Number of vertices, edges, etc : 5, 5, 3, 9, 12, 4
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,3,6,2}*720
3-fold quotients : {5,2,3,2,4}*480
6-fold quotients : {5,2,3,2,2}*240
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 6,42)( 7,44)( 8,43)( 9,48)(10,50)(11,49)(12,45)(13,47)(14,46)(15,51)
(16,53)(17,52)(18,57)(19,59)(20,58)(21,54)(22,56)(23,55)(24,60)(25,62)(26,61)
(27,66)(28,68)(29,67)(30,63)(31,65)(32,64)(33,69)(34,71)(35,70)(36,75)(37,77)
(38,76)(39,72)(40,74)(41,73);;
s3 := ( 6,46)( 7,45)( 8,47)( 9,43)(10,42)(11,44)(12,49)(13,48)(14,50)(15,55)
(16,54)(17,56)(18,52)(19,51)(20,53)(21,58)(22,57)(23,59)(24,64)(25,63)(26,65)
(27,61)(28,60)(29,62)(30,67)(31,66)(32,68)(33,73)(34,72)(35,74)(36,70)(37,69)
(38,71)(39,76)(40,75)(41,77);;
s4 := ( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(24,33)(25,35)(26,34)(27,36)
(28,38)(29,37)(30,39)(31,41)(32,40)(43,44)(46,47)(49,50)(52,53)(55,56)(58,59)
(60,69)(61,71)(62,70)(63,72)(64,74)(65,73)(66,75)(67,77)(68,76);;
s5 := ( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)
(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(42,60)(43,61)(44,62)
(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)
(56,74)(57,75)(58,76)(59,77);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s2*s3*s2*s3*s2*s3,
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(77)!(2,3)(4,5);
s1 := Sym(77)!(1,2)(3,4);
s2 := Sym(77)!( 6,42)( 7,44)( 8,43)( 9,48)(10,50)(11,49)(12,45)(13,47)(14,46)
(15,51)(16,53)(17,52)(18,57)(19,59)(20,58)(21,54)(22,56)(23,55)(24,60)(25,62)
(26,61)(27,66)(28,68)(29,67)(30,63)(31,65)(32,64)(33,69)(34,71)(35,70)(36,75)
(37,77)(38,76)(39,72)(40,74)(41,73);
s3 := Sym(77)!( 6,46)( 7,45)( 8,47)( 9,43)(10,42)(11,44)(12,49)(13,48)(14,50)
(15,55)(16,54)(17,56)(18,52)(19,51)(20,53)(21,58)(22,57)(23,59)(24,64)(25,63)
(26,65)(27,61)(28,60)(29,62)(30,67)(31,66)(32,68)(33,73)(34,72)(35,74)(36,70)
(37,69)(38,71)(39,76)(40,75)(41,77);
s4 := Sym(77)!( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(24,33)(25,35)(26,34)
(27,36)(28,38)(29,37)(30,39)(31,41)(32,40)(43,44)(46,47)(49,50)(52,53)(55,56)
(58,59)(60,69)(61,71)(62,70)(63,72)(64,74)(65,73)(66,75)(67,77)(68,76);
s5 := Sym(77)!( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)(13,31)(14,32)
(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(42,60)(43,61)
(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)
(55,73)(56,74)(57,75)(58,76)(59,77);
poly := sub<Sym(77)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s2*s3*s2*s3*s2*s3, s3*s4*s5*s4*s3*s4*s5*s4,
s4*s5*s4*s5*s4*s5*s4*s5, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope