Polytope of Type {12,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,3,2}*288
if this polytope has a name.
Group : SmallGroup(288,1028)
Rank : 4
Schlafli Type : {12,3,2}
Number of vertices, edges, etc : 24, 36, 6, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,3,2,2} of size 576
   {12,3,2,3} of size 864
   {12,3,2,4} of size 1152
   {12,3,2,5} of size 1440
   {12,3,2,6} of size 1728
Vertex Figure Of :
   {2,12,3,2} of size 576
   {4,12,3,2} of size 1152
   {6,12,3,2} of size 1728
   {6,12,3,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {4,3,2}*96
   4-fold quotients : {6,3,2}*72
   6-fold quotients : {4,3,2}*48
   12-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {24,3,2}*576, {12,6,2}*576b
   3-fold covers : {12,9,2}*864, {12,3,2}*864, {12,3,6}*864
   4-fold covers : {24,3,2}*1152, {12,12,2}*1152g, {12,12,2}*1152i, {12,6,4}*1152c, {24,6,2}*1152b, {24,6,2}*1152d, {12,6,2}*1152f, {12,3,2}*1152, {12,3,4}*1152b
   5-fold covers : {12,15,2}*1440
   6-fold covers : {24,9,2}*1728, {24,3,2}*1728, {12,18,2}*1728b, {12,6,2}*1728a, {24,3,6}*1728, {12,6,6}*1728b, {12,6,6}*1728d, {12,6,2}*1728c
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 4)( 5,10)( 6, 9)( 7,12)( 8,11);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11);;
s2 := ( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11);;
s3 := (13,14);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!( 1, 2)( 3, 4)( 5,10)( 6, 9)( 7,12)( 8,11);
s1 := Sym(14)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11);
s2 := Sym(14)!( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11);
s3 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >; 
 

to this polytope