include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,2,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,8}*288
if this polytope has a name.
Group : SmallGroup(288,120)
Rank : 4
Schlafli Type : {9,2,8}
Number of vertices, edges, etc : 9, 9, 8, 8
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{9,2,8,2} of size 576
{9,2,8,4} of size 1152
{9,2,8,4} of size 1152
{9,2,8,6} of size 1728
{9,2,8,3} of size 1728
Vertex Figure Of :
{2,9,2,8} of size 576
{4,9,2,8} of size 1152
{6,9,2,8} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,2,4}*144
3-fold quotients : {3,2,8}*96
4-fold quotients : {9,2,2}*72
6-fold quotients : {3,2,4}*48
12-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {9,2,16}*576, {18,2,8}*576
3-fold covers : {27,2,8}*864, {9,2,24}*864, {9,6,8}*864
4-fold covers : {9,2,32}*1152, {18,4,8}*1152a, {36,2,8}*1152, {18,2,16}*1152, {9,4,8}*1152
5-fold covers : {9,2,40}*1440, {45,2,8}*1440
6-fold covers : {27,2,16}*1728, {54,2,8}*1728, {9,2,48}*1728, {9,6,16}*1728, {18,2,24}*1728, {18,6,8}*1728a, {18,6,8}*1728b
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(13,14)(15,16);;
s3 := (10,11)(12,13)(14,15)(16,17);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(17)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(17)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(17)!(11,12)(13,14)(15,16);
s3 := Sym(17)!(10,11)(12,13)(14,15)(16,17);
poly := sub<Sym(17)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope