include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {39,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {39,4}*312
if this polytope has a name.
Group : SmallGroup(312,48)
Rank : 3
Schlafli Type : {39,4}
Number of vertices, edges, etc : 39, 78, 4
Order of s0s1s2 : 39
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{39,4,2} of size 624
Vertex Figure Of :
{2,39,4} of size 624
{4,39,4} of size 1248
{6,39,4} of size 1872
Quotients (Maximal Quotients in Boldface) :
13-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {39,4}*624, {78,4}*624b, {78,4}*624c
3-fold covers : {117,4}*936
4-fold covers : {156,4}*1248b, {156,4}*1248c, {39,8}*1248, {78,4}*1248
5-fold covers : {195,4}*1560
6-fold covers : {117,4}*1872, {234,4}*1872b, {234,4}*1872c, {39,12}*1872, {78,12}*1872d
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5,49)( 6,50)( 7,52)( 8,51)( 9,45)(10,46)(11,48)(12,47)(13,41)
(14,42)(15,44)(16,43)(17,37)(18,38)(19,40)(20,39)(21,33)(22,34)(23,36)(24,35)
(25,29)(26,30)(27,32)(28,31);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,49)(10,51)(11,50)(12,52)(13,45)(14,47)
(15,46)(16,48)(17,41)(18,43)(19,42)(20,44)(21,37)(22,39)(23,38)(24,40)(25,33)
(26,35)(27,34)(28,36)(30,31);;
s2 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44)(45,46)(47,48)(49,50)(51,52);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(52)!( 3, 4)( 5,49)( 6,50)( 7,52)( 8,51)( 9,45)(10,46)(11,48)(12,47)
(13,41)(14,42)(15,44)(16,43)(17,37)(18,38)(19,40)(20,39)(21,33)(22,34)(23,36)
(24,35)(25,29)(26,30)(27,32)(28,31);
s1 := Sym(52)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,49)(10,51)(11,50)(12,52)(13,45)
(14,47)(15,46)(16,48)(17,41)(18,43)(19,42)(20,44)(21,37)(22,39)(23,38)(24,40)
(25,33)(26,35)(27,34)(28,36)(30,31);
s2 := Sym(52)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)
(41,42)(43,44)(45,46)(47,48)(49,50)(51,52);
poly := sub<Sym(52)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope