Polytope of Type {8,2,5,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,2,5,2}*320
if this polytope has a name.
Group : SmallGroup(320,1426)
Rank : 5
Schlafli Type : {8,2,5,2}
Number of vertices, edges, etc : 8, 8, 5, 5, 2
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {8,2,5,2,2} of size 640
   {8,2,5,2,3} of size 960
   {8,2,5,2,4} of size 1280
   {8,2,5,2,5} of size 1600
   {8,2,5,2,6} of size 1920
Vertex Figure Of :
   {2,8,2,5,2} of size 640
   {4,8,2,5,2} of size 1280
   {4,8,2,5,2} of size 1280
   {6,8,2,5,2} of size 1920
   {3,8,2,5,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,2,5,2}*160
   4-fold quotients : {2,2,5,2}*80
Covers (Minimal Covers in Boldface) :
   2-fold covers : {16,2,5,2}*640, {8,2,10,2}*640
   3-fold covers : {24,2,5,2}*960, {8,2,15,2}*960
   4-fold covers : {32,2,5,2}*1280, {8,4,10,2}*1280a, {8,2,10,4}*1280, {8,2,20,2}*1280, {16,2,10,2}*1280
   5-fold covers : {8,2,25,2}*1600, {40,2,5,2}*1600, {8,2,5,10}*1600, {8,10,5,2}*1600
   6-fold covers : {16,2,15,2}*1920, {48,2,5,2}*1920, {8,2,30,2}*1920, {8,2,10,6}*1920, {8,6,10,2}*1920, {24,2,10,2}*1920
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (10,11)(12,13);;
s3 := ( 9,10)(11,12);;
s4 := (14,15);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(15)!(2,3)(4,5)(6,7);
s1 := Sym(15)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(15)!(10,11)(12,13);
s3 := Sym(15)!( 9,10)(11,12);
s4 := Sym(15)!(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope