include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,5,2,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,5,2,8}*320
if this polytope has a name.
Group : SmallGroup(320,1426)
Rank : 5
Schlafli Type : {2,5,2,8}
Number of vertices, edges, etc : 2, 5, 5, 8, 8
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,5,2,8,2} of size 640
{2,5,2,8,4} of size 1280
{2,5,2,8,4} of size 1280
{2,5,2,8,6} of size 1920
{2,5,2,8,3} of size 1920
Vertex Figure Of :
{2,2,5,2,8} of size 640
{3,2,5,2,8} of size 960
{4,2,5,2,8} of size 1280
{5,2,5,2,8} of size 1600
{6,2,5,2,8} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,5,2,4}*160
4-fold quotients : {2,5,2,2}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,5,2,16}*640, {2,10,2,8}*640
3-fold covers : {2,5,2,24}*960, {2,15,2,8}*960
4-fold covers : {2,5,2,32}*1280, {2,10,4,8}*1280a, {4,10,2,8}*1280, {2,20,2,8}*1280, {2,10,2,16}*1280
5-fold covers : {2,25,2,8}*1600, {2,5,2,40}*1600, {10,5,2,8}*1600, {2,5,10,8}*1600
6-fold covers : {2,15,2,16}*1920, {2,5,2,48}*1920, {2,30,2,8}*1920, {2,10,6,8}*1920, {6,10,2,8}*1920, {2,10,2,24}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7);;
s2 := (3,4)(5,6);;
s3 := ( 9,10)(11,12)(13,14);;
s4 := ( 8, 9)(10,11)(12,13)(14,15);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(15)!(1,2);
s1 := Sym(15)!(4,5)(6,7);
s2 := Sym(15)!(3,4)(5,6);
s3 := Sym(15)!( 9,10)(11,12)(13,14);
s4 := Sym(15)!( 8, 9)(10,11)(12,13)(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope