include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {7,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,3}*336
Also Known As : {7,3}8. if this polytope has another name.
Group : SmallGroup(336,208)
Rank : 3
Schlafli Type : {7,3}
Number of vertices, edges, etc : 56, 84, 24
Order of s0s1s2 : 8
Order of s0s1s2s1 : 7
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{7,3,2} of size 672
Vertex Figure Of :
{2,7,3} of size 672
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {7,6}*672a, {14,3}*672
3-fold covers : {21,3}*1008
4-fold covers : {7,12}*1344, {28,3}*1344, {14,6}*1344b
Permutation Representation (GAP) :
s0 := (3,7)(4,8)(5,6);;
s1 := (2,3)(4,6)(5,7);;
s2 := (1,2)(4,6)(5,8);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(8)!(3,7)(4,8)(5,6);
s1 := Sym(8)!(2,3)(4,6)(5,7);
s2 := Sym(8)!(1,2)(4,6)(5,8);
poly := sub<Sym(8)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >;
References : None.
to this polytope