Polytopes for Group SmallGroup(336,208)

This page is part of the Atlas of Small Regular Polytopes
Nondegenerate Polytopes :
  1. {3,7}*336
  2. {3,8}*336a
  3. {3,8}*336b
  4. {4,6}*336
  5. {4,7}*336
  6. {4,8}*336a
  7. {4,8}*336b
  8. {6,4}*336
  9. {6,6}*336
  10. {6,7}*336
  11. {6,8}*336a
  12. {6,8}*336b
  13. {7,3}*336
  14. {7,4}*336
  15. {7,6}*336
  16. {7,7}*336
  17. {7,8}*336a
  18. {7,8}*336b
  19. {8,3}*336a
  20. {8,3}*336b
  21. {8,4}*336a
  22. {8,4}*336b
  23. {8,6}*336a
  24. {8,6}*336b
  25. {8,7}*336a
  26. {8,7}*336b
  27. {8,8}*336a
  28. {8,8}*336b


Degenerate Polytopes : None.


Other Groups of Order 336 :
  1. SmallGroup(336,93) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(336,148) 2 nondegenerate polytopes and 2 degenerate polytopes.
  3. SmallGroup(336,149) 2 nondegenerate polytopes and 2 degenerate polytopes.
  4. SmallGroup(336,196) 0 nondegenerate polytopes and 2 degenerate polytopes.
  5. SmallGroup(336,198) 2 nondegenerate polytopes and 2 degenerate polytopes.
  6. SmallGroup(336,208) 28 nondegenerate polytopes and 0 degenerate polytopes (this group).
  7. SmallGroup(336,212) 4 nondegenerate polytopes and 6 degenerate polytopes.
  8. SmallGroup(336,215) 6 nondegenerate polytopes and 4 degenerate polytopes.
  9. SmallGroup(336,219) 0 nondegenerate polytopes and 30 degenerate polytopes.
  10. SmallGroup(336,227) 0 nondegenerate polytopes and 7 degenerate polytopes.