include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {7,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,8}*336b
Also Known As : {7,8}3. if this polytope has another name.
Group : SmallGroup(336,208)
Rank : 3
Schlafli Type : {7,8}
Number of vertices, edges, etc : 21, 84, 24
Order of s0s1s2 : 3
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{7,8,2} of size 672
Vertex Figure Of :
{2,7,8} of size 672
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {7,8}*672b, {14,8}*672c, {14,8}*672d
3-fold covers : {21,8}*1008a
4-fold covers : {28,8}*1344c, {28,8}*1344d, {7,16}*1344a, {14,8}*1344b
5-fold covers : {35,8}*1680b
Permutation Representation (GAP) :
s0 := (3,7)(4,8)(5,6);;
s1 := (2,3)(4,6)(5,7);;
s2 := (1,2)(3,7)(4,5)(6,8);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(8)!(3,7)(4,8)(5,6);
s1 := Sym(8)!(2,3)(4,6)(5,7);
s2 := Sym(8)!(1,2)(3,7)(4,5)(6,8);
poly := sub<Sym(8)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope