include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,14,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,14,2,3}*336
if this polytope has a name.
Group : SmallGroup(336,219)
Rank : 5
Schlafli Type : {2,14,2,3}
Number of vertices, edges, etc : 2, 14, 14, 3, 3
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,14,2,3,2} of size 672
{2,14,2,3,3} of size 1344
{2,14,2,3,4} of size 1344
Vertex Figure Of :
{2,2,14,2,3} of size 672
{3,2,14,2,3} of size 1008
{4,2,14,2,3} of size 1344
{5,2,14,2,3} of size 1680
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,7,2,3}*168
7-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,28,2,3}*672, {4,14,2,3}*672, {2,14,2,6}*672
3-fold covers : {2,14,2,9}*1008, {2,14,6,3}*1008, {6,14,2,3}*1008, {2,42,2,3}*1008
4-fold covers : {4,28,2,3}*1344, {2,56,2,3}*1344, {8,14,2,3}*1344, {2,14,2,12}*1344, {2,28,2,6}*1344, {2,14,4,6}*1344, {4,14,2,6}*1344, {2,14,4,3}*1344
5-fold covers : {10,14,2,3}*1680, {2,14,2,15}*1680, {2,70,2,3}*1680
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
s2 := ( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,15)(12,13)(14,16);;
s3 := (18,19);;
s4 := (17,18);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(19)!(1,2);
s1 := Sym(19)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);
s2 := Sym(19)!( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,15)(12,13)(14,16);
s3 := Sym(19)!(18,19);
s4 := Sym(19)!(17,18);
poly := sub<Sym(19)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope