Polytopes for Group SmallGroup(336,219)

This page is part of the Atlas of Small Regular Polytopes
Nondegenerate Polytopes : None.

Degenerate Polytopes :
  1. {2,2,3,2,7}*336
  2. {2,2,7,2,3}*336
  3. {2,3,2,2,7}*336
  4. {2,3,2,7,2}*336
  5. {2,3,2,14}*336
  6. {2,6,2,7}*336
  7. {2,6,14}*336
  8. {2,7,2,2,3}*336
  9. {2,7,2,3,2}*336
  10. {2,7,2,6}*336
  11. {2,14,2,3}*336
  12. {2,14,6}*336
  13. {3,2,2,2,7}*336
  14. {3,2,2,7,2}*336
  15. {3,2,2,14}*336
  16. {3,2,7,2,2}*336
  17. {3,2,14,2}*336
  18. {6,2,2,7}*336
  19. {6,2,7,2}*336
  20. {6,2,14}*336
  21. {6,14,2}*336
  22. {7,2,2,2,3}*336
  23. {7,2,2,3,2}*336
  24. {7,2,2,6}*336
  25. {7,2,3,2,2}*336
  26. {7,2,6,2}*336
  27. {14,2,2,3}*336
  28. {14,2,3,2}*336
  29. {14,2,6}*336
  30. {14,6,2}*336



Other Groups of Order 336 :
  1. SmallGroup(336,93) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(336,148) 2 nondegenerate polytopes and 2 degenerate polytopes.
  3. SmallGroup(336,149) 2 nondegenerate polytopes and 2 degenerate polytopes.
  4. SmallGroup(336,196) 0 nondegenerate polytopes and 2 degenerate polytopes.
  5. SmallGroup(336,198) 2 nondegenerate polytopes and 2 degenerate polytopes.
  6. SmallGroup(336,208) 28 nondegenerate polytopes and 0 degenerate polytopes.
  7. SmallGroup(336,212) 4 nondegenerate polytopes and 6 degenerate polytopes.
  8. SmallGroup(336,215) 6 nondegenerate polytopes and 4 degenerate polytopes.
  9. SmallGroup(336,219) 0 nondegenerate polytopes and 30 degenerate polytopes (this group).
  10. SmallGroup(336,227) 0 nondegenerate polytopes and 7 degenerate polytopes.