include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,7,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,7,2}*336
if this polytope has a name.
Group : SmallGroup(336,219)
Rank : 5
Schlafli Type : {6,2,7,2}
Number of vertices, edges, etc : 6, 6, 7, 7, 2
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,2,7,2,2} of size 672
{6,2,7,2,3} of size 1008
{6,2,7,2,4} of size 1344
{6,2,7,2,5} of size 1680
Vertex Figure Of :
{2,6,2,7,2} of size 672
{3,6,2,7,2} of size 1008
{4,6,2,7,2} of size 1344
{3,6,2,7,2} of size 1344
{4,6,2,7,2} of size 1344
{4,6,2,7,2} of size 1344
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,7,2}*168
3-fold quotients : {2,2,7,2}*112
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,2,7,2}*672, {6,2,14,2}*672
3-fold covers : {18,2,7,2}*1008, {6,2,21,2}*1008
4-fold covers : {24,2,7,2}*1344, {12,2,14,2}*1344, {6,2,28,2}*1344, {6,2,14,4}*1344, {6,4,14,2}*1344
5-fold covers : {30,2,7,2}*1680, {6,2,35,2}*1680
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(10,11)(12,13);;
s3 := ( 7, 8)( 9,10)(11,12);;
s4 := (14,15);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(15)!(3,4)(5,6);
s1 := Sym(15)!(1,5)(2,3)(4,6);
s2 := Sym(15)!( 8, 9)(10,11)(12,13);
s3 := Sym(15)!( 7, 8)( 9,10)(11,12);
s4 := Sym(15)!(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope