include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,2,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,2,2,3}*336
if this polytope has a name.
Group : SmallGroup(336,219)
Rank : 5
Schlafli Type : {14,2,2,3}
Number of vertices, edges, etc : 14, 14, 2, 3, 3
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{14,2,2,3,2} of size 672
{14,2,2,3,3} of size 1344
{14,2,2,3,4} of size 1344
Vertex Figure Of :
{2,14,2,2,3} of size 672
{4,14,2,2,3} of size 1344
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,2,3}*168
7-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {28,2,2,3}*672, {14,4,2,3}*672, {14,2,2,6}*672
3-fold covers : {14,2,2,9}*1008, {14,2,6,3}*1008, {14,6,2,3}*1008, {42,2,2,3}*1008
4-fold covers : {28,4,2,3}*1344, {56,2,2,3}*1344, {14,8,2,3}*1344, {14,2,2,12}*1344, {28,2,2,6}*1344, {14,2,4,6}*1344a, {14,4,2,6}*1344, {14,2,4,3}*1344
5-fold covers : {14,10,2,3}*1680, {14,2,2,15}*1680, {70,2,2,3}*1680
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);;
s2 := (15,16);;
s3 := (18,19);;
s4 := (17,18);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(19)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s1 := Sym(19)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);
s2 := Sym(19)!(15,16);
s3 := Sym(19)!(18,19);
s4 := Sym(19)!(17,18);
poly := sub<Sym(19)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope