include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,2,3}*360
if this polytope has a name.
Group : SmallGroup(360,154)
Rank : 4
Schlafli Type : {30,2,3}
Number of vertices, edges, etc : 30, 30, 3, 3
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{30,2,3,2} of size 720
{30,2,3,3} of size 1440
{30,2,3,4} of size 1440
Vertex Figure Of :
{2,30,2,3} of size 720
{4,30,2,3} of size 1440
{4,30,2,3} of size 1440
{4,30,2,3} of size 1440
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {15,2,3}*180
3-fold quotients : {10,2,3}*120
5-fold quotients : {6,2,3}*72
6-fold quotients : {5,2,3}*60
10-fold quotients : {3,2,3}*36
15-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {60,2,3}*720, {30,2,6}*720
3-fold covers : {90,2,3}*1080, {30,2,9}*1080, {30,6,3}*1080a, {30,6,3}*1080b
4-fold covers : {120,2,3}*1440, {30,2,12}*1440, {60,2,6}*1440, {30,4,6}*1440, {30,4,3}*1440
5-fold covers : {150,2,3}*1800, {30,2,15}*1800
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,16)(17,20)(18,19)(21,22)
(23,26)(24,25)(27,30)(28,29);;
s1 := ( 1,17)( 2,11)( 3, 9)( 4,19)( 5, 7)( 6,27)( 8,13)(10,23)(12,21)(14,29)
(15,18)(16,28)(20,25)(22,24)(26,30);;
s2 := (32,33);;
s3 := (31,32);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(33)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,16)(17,20)(18,19)
(21,22)(23,26)(24,25)(27,30)(28,29);
s1 := Sym(33)!( 1,17)( 2,11)( 3, 9)( 4,19)( 5, 7)( 6,27)( 8,13)(10,23)(12,21)
(14,29)(15,18)(16,28)(20,25)(22,24)(26,30);
s2 := Sym(33)!(32,33);
s3 := Sym(33)!(31,32);
poly := sub<Sym(33)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope