include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,2,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,2,12}*1440
if this polytope has a name.
Group : SmallGroup(1440,5675)
Rank : 4
Schlafli Type : {30,2,12}
Number of vertices, edges, etc : 30, 30, 12, 12
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {15,2,12}*720, {30,2,6}*720
3-fold quotients : {10,2,12}*480, {30,2,4}*480
4-fold quotients : {15,2,6}*360, {30,2,3}*360
5-fold quotients : {6,2,12}*288
6-fold quotients : {5,2,12}*240, {15,2,4}*240, {10,2,6}*240, {30,2,2}*240
8-fold quotients : {15,2,3}*180
9-fold quotients : {10,2,4}*160
10-fold quotients : {3,2,12}*144, {6,2,6}*144
12-fold quotients : {5,2,6}*120, {10,2,3}*120, {15,2,2}*120
15-fold quotients : {2,2,12}*96, {6,2,4}*96
18-fold quotients : {5,2,4}*80, {10,2,2}*80
20-fold quotients : {3,2,6}*72, {6,2,3}*72
24-fold quotients : {5,2,3}*60
30-fold quotients : {3,2,4}*48, {2,2,6}*48, {6,2,2}*48
36-fold quotients : {5,2,2}*40
40-fold quotients : {3,2,3}*36
45-fold quotients : {2,2,4}*32
60-fold quotients : {2,2,3}*24, {3,2,2}*24
90-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,16)(17,20)(18,19)(21,22)
(23,26)(24,25)(27,30)(28,29);;
s1 := ( 1,17)( 2,11)( 3, 9)( 4,19)( 5, 7)( 6,27)( 8,13)(10,23)(12,21)(14,29)
(15,18)(16,28)(20,25)(22,24)(26,30);;
s2 := (32,33)(34,35)(37,40)(38,39)(41,42);;
s3 := (31,37)(32,34)(33,41)(35,38)(36,39)(40,42);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(42)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,16)(17,20)(18,19)
(21,22)(23,26)(24,25)(27,30)(28,29);
s1 := Sym(42)!( 1,17)( 2,11)( 3, 9)( 4,19)( 5, 7)( 6,27)( 8,13)(10,23)(12,21)
(14,29)(15,18)(16,28)(20,25)(22,24)(26,30);
s2 := Sym(42)!(32,33)(34,35)(37,40)(38,39)(41,42);
s3 := Sym(42)!(31,37)(32,34)(33,41)(35,38)(36,39)(40,42);
poly := sub<Sym(42)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope