# Polytope of Type {48,2,2}

Atlas Canonical Name : {48,2,2}*384
if this polytope has a name.
Group : SmallGroup(384,14577)
Rank : 4
Schlafli Type : {48,2,2}
Number of vertices, edges, etc : 48, 48, 2, 2
Order of s0s1s2s3 : 48
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{48,2,2,2} of size 768
{48,2,2,3} of size 1152
{48,2,2,5} of size 1920
Vertex Figure Of :
{2,48,2,2} of size 768
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {24,2,2}*192
3-fold quotients : {16,2,2}*128
4-fold quotients : {12,2,2}*96
6-fold quotients : {8,2,2}*64
8-fold quotients : {6,2,2}*48
12-fold quotients : {4,2,2}*32
16-fold quotients : {3,2,2}*24
24-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {48,4,2}*768a, {48,2,4}*768, {96,2,2}*768
3-fold covers : {144,2,2}*1152, {48,2,6}*1152, {48,6,2}*1152b, {48,6,2}*1152c
5-fold covers : {240,2,2}*1920, {48,2,10}*1920, {48,10,2}*1920
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(18,21)(19,23)
(20,22)(24,27)(25,29)(26,28)(30,33)(31,35)(32,34)(36,39)(37,41)(38,40)(43,46)
(44,45)(47,48);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,25)(17,20)
(18,22)(21,31)(23,26)(24,28)(27,37)(29,32)(30,34)(33,43)(35,38)(36,40)(39,47)
(41,44)(42,45)(46,48);;
s2 := (49,50);;
s3 := (51,52);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(52)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(18,21)
(19,23)(20,22)(24,27)(25,29)(26,28)(30,33)(31,35)(32,34)(36,39)(37,41)(38,40)
(43,46)(44,45)(47,48);
s1 := Sym(52)!( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,25)
(17,20)(18,22)(21,31)(23,26)(24,28)(27,37)(29,32)(30,34)(33,43)(35,38)(36,40)
(39,47)(41,44)(42,45)(46,48);
s2 := Sym(52)!(49,50);
s3 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope